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Useful Terminology 

Much of the terminology of cryptography can be linked back to the 

time when only written messages were being encrypted and the same 

terminology is still used regardless of whether it is being applied to a 

written message or a stream of binary code between two computers  

CODE: An unvarying rule for replacing a piece of information with 

another object, not necessarily of the same sort e.g. ASCII. 

  

CRYPTANALYSIS: The science (and art) of recovering information 

from ciphers without knowledge of the key. 

CRYPTOGRAPHY The science of the enciphering and 

deciphering of messages in secret code or cipher. 

CRYPTOSYSTEM: A system for encrypting information. 

  

DECRYPTION: The process of converting the CIPHER back into 

PLAINTEXT. 

  

ENCRYPTION: The process of converting the PLAINTEXT into a 

CIPHER. 

  

KEY: The secret information known only to the transmitter and the 

receiver which is used to secure the PLAINTEXT. 
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MONOALPHABETIC SUBSTITUTION: A method of encryption where 

a letter in the plaintext is always replaced by the same letter in the 

ciphertext. 

  

PLAINTEXT:  The source information to be secured. 

  

POLYALPHABETIC SUBSTITUTION: A method of encryption where 

a letter in the plaintext is not always replaced by the same letter in the 

ciphertext. 

RSA Enhance: New Approach RSA Algorithm  
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Enhanced Method for RSA Cryptosystem Algorithm 

Abstract 

The motive of this thesis is the desire to improve the protection of 

information and data on the use of encryption algorithms.  Improving 

the specific encryption algorithm, due to the increment transmission of 

data and information, will protect the privacy and satisfy 

authentication. 

 

In this thesis, it was proposed to enhance the RSA ( which stands 

for Rivest, Shamir and Adleman who first publicly described it ) 

algorithm through the use of additional third prime number in 

the composition of the public key and private key. This will increase 

the analysis complexity of the variable (N), where the process of its 

analysis with the development of equipments and tools become much 

easier nowadays. 

 

The existence of three prime numbers will give the ability to the 

developed encryption method to increase the difficulty of analysis of 

the variable (n), In addition to increasing the speed of the process 

encryption and decryption. It is possible to generate a public 

key and private key without the need to use major 

calculations. To generate a variable (n) using the original RSA 

algorithm, which contributes to generate the public key and private 

key, large and have a number of 300 digits. To use two primes  
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numbers each of them is a number composed of 150 digits. In this 

case if  the multiplication process has been used, it will take longer 

than the time of generating the same variable (n) by using the no more 

proposed method which uses three prime numbers where each 

number length 100 digits. 

 

We have conducted experiments on a set of numbers randomly, as 

it proved that the Enhanced Method for RSA Cryptosystem 

Algorithm gone a significant results in terms of speed other than the 

original algorithms. In terms of encryption and decryption hand to 

generate the public key and private key, as well as showing that the 

analysis of the variable (n) takes a long time in the proposed method 

for algorithm RSA about the original method  and this indicates the 

increasing difficulty in the way of analysis developed. 
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Chapter One {Introduction} 

1.1Introduction 

The link with the internet Imposed new security challenges for large 

corporate networks; the last ten years thousands of companies 

entered to the Internet, where you created these companies up sites 

on the Internet [1] . 

 

Provided staff services, e-mail and internet browsers and bringing to 

the external user armed with some knowledge and some of the goals 

malicious way. New to infiltrate the internal regulations, as soon as 

the intruder inside the corporate network, he/she can wander where 

and destroy or alter data, or stealing, causing damage of various 

kinds. Even if we take more web applications use an e-mail, it is not 

considered safe, can anyone who has Analyst protocols and access 

to routers and network devices .  

 

Other dealing with e-mail as it moves from one network to the network 

via the Internet to read or alter the message sent. If you do not take 

certain steps to ensure the integrity, acting in some companies, if the 

security challenges were not a real threat are looking forward to the 

structure infrastructure of the Internet, as a relatively cheap, to link 

two or several local networks geographically isolated with each other 

or to link with the remote network . 
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It should be noted that the business on the Internet, which require 

millions of exchanges, banking secrecy has become close to the 

reach of many, and respond market network security quickly for 

challenges of security the Internet by adopting the techniques of 

verification and encryption are available in this area to apply to links 

the Internet, and through the development of new products in the field 

of information security, today's markets are in chaos, standards, 

techniques and products [1]. 

 

The internet is currently the biggest carrier for data and information. 

Sometimes we have transferred the sensitive data and information 

(like bank information's) as encrypted forms. If we want to protect and 

save this information from crackers or hackers we should protect 

them. 

 

The developed hardware and tangible tools are not sufficient to 

protect the data from unauthenticated parties and-more and more-

most of encumbrance is under the software systems and controlling 

responsibilities. Therefore, the experts, researchers and developers 

have to build and develop security systems, protect the information 

and prevent the attackers from misuse with the very important source 

(information). For this reason, the term "Encryption" was brought out, 

and it is the main factor that should be available in protection system 

and take for a real process to manipulate and generate the security 

system. Figure (1.1) shows an overview of Cryptology [16].  
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1.2.Cryptology 

Cryptography or cryptology {from Greek ( κρυπτός ), ( hidden ) ; 

( kryptos ), ( secret ); and ( γράφειν ) , ( writing ), or ( λογία ),  ( study 

), respectively}[12] is the practice and study of hiding information. 

Modern cryptography intersects the disciplines 

of mathematics, computer science, and electrical engineering. 

Applications of cryptography include ATM cards, computer 

passwords, and electronic commerce. 

Cryptology prior to the modern age was almost synonymous with 

encryption, the conversion of information from a readable state to 

apparent nonsense. The sender retained the ability to decrypt the 

information and therefore avoid unwanted persons being able to read  

  

Cryptology 

Encryption Decryption 

Symmetric-

Key 
Asymmetric-

Key 
 

Figure  1.1: Overview on Cryptology. 

http://en.wikipedia.org/wiki/Ancient_Greek
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it. Since WWI and the advent of the computer, the methods used to 

carry out cryptology have become increasingly complex and its 

application more widespread [13]. 

 

Modern cryptography follows a strongly scientific approach, and 

designs cryptographic algorithms around computational hardness 

assumptions that are assumed hard to break by an adversary. Such 

systems are not unbreakable in theory but it is infeasible to do so for 

any practical adversary. Information-theoretically secure schemes 

that provably cannot be broken exist, but they are less practical than 

computationally-secure mechanisms. An example of such systems is 

the one-time pad. Alongside the advancement in cryptology-related 

technology, the practice has raised a number of legal issues, some of 

which remain unresolved [14]. 

Cryptographic systems are generally grouped according to three facts 

about them [16]: 

The mathematical operation that changes the plaintext into the 

ciphertext using the encryption key. 

Whether a block or a stream cipher is produced. 

The type of key system used - single or two key. 
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1.3.Encryption 

The Encryption is the process of transforming information, using an 

algorithm, to make it unreadable to anyone except those possessing 

special knowledge. The result of the process is encrypted information. 

In many contexts, Encryption process depends on transforming the 

plain text to cipher text [2]. 

 

The actual cryptographic process is generally a complicated 

mathematical formulation, the more complex -- the more difficult to 

break. A key is supplied to the recipient so that they can then decipher 

the message. Keys for encryption algorithms are described in terms 

of the number of bits. The higher the number of bits - the more difficult 

that cryptosystem would be to break. 

 

In the science of encryption, the encryption strength of information 

depends on several things, including [1]:  

The algorithms. 

The length of key. 

The time of the encryption. 

Tools used in the encryption. 

The algorithm is any well-defined computational procedure that takes 

some value, or set of values, as input and produces some value, or 

set of values, as output. An algorithm is thus a sequence of 

computational steps that transform the input into the output. 
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We can also view an algorithm as a tool for solving a well-specified 

computational problem. The statement of the problem specifies in 

general terms the desired input/output relationship. The algorithm 

describes a specific computational procedure for achieving that 

input/output relationship [3]. 

 

The key is a code used within the algorithm, so as to increase the  

Complexity of the encryption process, which is also used in decryption 

and in order to convert information encrypted to the information to be  

understand. 

 

There are two categories of encryption dependently of key. 

Symmetric Encryption technology. 

Asymmetric Encryption technology. 

1.4 Network Encryption: 

 

Network is a collection of computers linked to each other, either 

through wired or wireless network. The exchange of information 

among themselves, and because of the Web has become almost all 

devices of the world are connected with each other and the world has 

become a very small village roaming through a computer. Although 

there are a lot of good people, is not it also draws the bad guys, who 

are trying to spy on information, take and how to dispose of what they  
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want, and here it was necessary to the protection of information on 

you making it there is something called encryption networks, which is 

to protect your information from hackers through a computer network. 

1.5. Symmetric Encryption Technology: 

 

Symmetric encryption is the oldest and best-known technique. A 

secret key, which can be a number, a word, or just a string of random 

letters, is applied to the text of a message to change the content in a 

particular way. This might be as simple as shifting each letter by a 

number of places in the alphabet. As long as both sender and 

recipient know the secret key, they can encrypt and decrypt all 

messages that use this key. Figure (1.2) shows the conventional 

Encryption [1]. 

 

 

 

 

 

 

 

 

 

 

  
Figure 1.2: Simplified Model of Conventional Encryption 
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1.6. Private Key Encryption 

Private Key encryption is the standard form. Both parties share an 

encryption key, and the encryption key is also the one used to decrypt 

the message. The difficulty is sharing the key before you start 

encrypting the message - how do you safely transmit it? 

Many private key encryption methods use public key encryption to 

transmit the private key for each data transfer session. 

If Bob and Alice want to use private key encryption to share a secret 

message, they would each use a copy of the same key. Bob writes 

his message to Alice and uses their shared private key to encrypt the 

message. The message is then sent to Alice. Alice uses her copy of 

the private key to decrypt the message. Private key encryption is like 

making copies of a key. Anyone with a copy can open the lock. In the 

case of Bob and Alice, their keys would be guarded closely because 

they can both encrypt and decrypt messages [18]. 

Asymmetric Encryption Technology: 

 

The problem with secret keys is exchanging them over the Internet or 

a large network while preventing them from falling into the wrong 

hands. Anyone who knows the secret key can decrypt the message. 

One answer is asymmetric encryption, in which there are two related 

keys--a key pair. A public key is made freely available to anyone who 

might want to send you a message. A second, private key is kept 

secret, so that only you know it [18].  
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Any message (text, binary files, or documents) that are encrypted by 

using the public key can only be decrypted by applying the same 

algorithm, but by using the matching private key. Any message that 

is encrypted by using the private key can only be decrypted by using 

the matching public key.  

This means that you do not have to worry about passing public keys 

over the Internet (the keys are supposed to be public). A problem with 

asymmetric encryption, however, is that it is slower than symmetric 

encryption. It requires far more processing power to both encrypt and 

decrypt the content of the message [1]. Figure (1.3) shows the 

asymmetric Encryption. It is considered the most 

powerful examples applied to the public key are RSA code [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.3: Public-Key Cryptography 
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1.6.1Public Key encryption 

Public key encryption uses two keys - one to encrypt, and one to 

decrypt  the message, and sends the encrypted message to the 

receiver. Only the receiver can then decrypt the message - even the 

sender cannot read the encrypted message [19]. 

When Bob wants to share a secret with Alice using public key 

encryption, he first asks Alice for her public key. Next, Bob uses 

Alice's public key to encrypt the message. In public key encryption, 

only Alice's private key can unlock the message encrypted with her 

public key. Bob sends his message to Alice. Alice uses her private 

key to decrypt Bob's message. 

The things that make public key encryption work are that Alice very 

closely guards her private key and freely distributes her public key. 

She knows that it will unlock any message encrypted with her public 

key [20]. 

1.6.2.Rivest, Shamir, and Adelman (RSA) Algorithm 

The RSA Algorithm is a form of public key encryption.  Public key 

encryption is a process where each user is given two keys, one which 

is public and seen by anyone who wishes to see it and one which is 

kept strictly private.  The thought of making one of your keys public 

seems bizarre at first, but we will soon see why this is so effective and 

secure. 

In public key encryption algorithms, such as RSA, each message is 

encrypted using your recipient's public key.  You can get your  
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recipient's public key easily- it's public.  However, only your recipient 

has the corresponding private key to decode it.  So suppose someone 

intercepted your message.  They would only have access to the public 

keys, but almost no way to actually decrypt the message.  The only 

way would be to reverse the algorithm, which is extremely difficult 

[11]. 

 

It is named after its inventors: Ron Rivest, Adi Shamir, and Leonard 

Adleman [5], Its security comes from the difficulty of factoring large 

numbers, The public and private keys are functions of a pair of large 

prime numbers (e.g., 1024 bits) . 

 

To generate a key pair, choose two large random prime numbers, p 

and q, for maximum security, p and q should be of equal length [5]. 

 

The public key code contains five components . 

Plain text: it is any text or readable data that will be used with 

algorithms as inputs. 

Encryption algorithm. 

Two keys which are Public key and privet key. 

Cipher text: it is the output of encryption processes of original plain 

text by the encryption algorithm that used. 

Decryption algorithm: where the cipher text will be as input paralleled 

with known public key to return the plain text. 
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1.6.3The RSA cryptosystem 

In the RSA public-key cryptosystem, a participant creates his/her 

public and secret keys with the following procedure [3]. 

Select at random two large prime numbers p and q such that p ≠ q. 

The primes p and q might be, say, 512 bits each. 

Compute n by the equation n = p*q. 

Compute φ(n) by the equation φ(n) = (p-1) * (q-1). 

Select a small odd integer e that is relatively prime to φ(n), the GCD(e, 

φ(n)) must equal 1 and 1 < e < φ(n)  . 

Compute d as the multiplicative inverse of e, modulo φ(n) by the 

equation d*e=1 mod φ(n) .  

Publish the RSA public key P= (e, n). 

Keep the RSA secret key S = (d, n). 

The encrypted message c will be made up of message blocks ci of 

about the same length [5]. 

The encryption formula is: 

ci = mi
P mod n 

To decrypt a message, take each encrypted block ci and compute: 

mi = ci
S mod n 

Since 

ci
S = (mi

P)S = mi
k(p-1)(q-1)+1 = mi mi

k(p-1)(q-1) = mi *1=mi; all (mod n) 

( mi
k(p-1)(q-1) ≡ 1 mod n follows from Euler’s Theorem. ) 
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This recovers the message . 

1.6.4 Security Attacks 

We can divide the attacks on the security networks or computer 

system in view of the computer to function as a source of data; we 

can say that there is a source of flow data, which is the sender (such 

as sending a file or folder ) and there is also destination, or the 

target (receiving a file or folder ) . 

Normal flow – Under normal conditions traffic should pass 

unobstructed from source to destination as in figure (1.4).  A source 

of data is sending that data to an intended destination and that 

destination is receiving this data unobstructed and without it being 

compromised in any way, and in a perfect world this would be always 

be the case. 

 

 

 

 

 

Mostly this flow is not going in this way because the attacks pursue 

data that causing the data flow to be abnormal. There are four types 

of attacks . 

A) Interruption – The first type of attack and among the simplest would 

be total packet flow interruption.   

  

Info. 

destin

ation 

Info. 

sourc

e 

Figure 1.4: Normal Traffic Flow Pattern From Source To Destination 
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This category can include lots of different types of network attacks 

such as physical, discussed previously, which could be carried out by 

a person physically turning off the router or otherwise disabling it.  The 

interruption of service may also be caused by an intruder gaining 

unrestricted access by means of telnet or some type of out of band 

management and commanding the routers interfaces to shut down 

thereby interrupting traffic.  A Denial of Service (DoS) attack is an 

example of an attack where its purpose is the interruption of 

information as shown in Figure (1.5).  

 

 

 

 

 

B) Interception - A common type of attack, this attack is performed by 

snooping on network traffic to try to obtain data such as passwords, 

credit card numbers, or other types of sensitive information that may 

be transmitted in clear text.  A Man in the Middle attack is an example 

of this category.  The industry has developed many ways to try to 

protecting the hijacking of information in this way.  Encryption means 

such as SSL, VPN, 3DES, BPI+ are deployed to encrypts the flow of 

information from source to destination so that if someone is able to 

snoop in on the flow of traffic, all the person will see is ciphered text 

  

Figure 1.5: Traffic Interruption From Source To Destination By An Attack 

Info. 

destin

ation 

Info. 

source 
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.  The use of “strong” encryption is always preferable since even 

though the text is encrypted the intruder does have the ability to 

capture and save this information and try to decrypt it passively.  

Some encryption methods are more easily broken than others so as 

the data being sent becomes more sensitive in nature, more care will 

need to be taken to protect that data from this type of intrusion as 

shown in Figure (1.6). 

 

 

 

 

 

 

 

 

C) Modification – Port Redirection would be a way for this type of 

attack to occur. In this case an attacker has been able to force traffic 

to flow from source to destination un-detected through a 3rd party host 

to be able to modify or falsify data as it passes through. If done 

properly and if no detection methods are in place both the source and 

destination will have no way of knowing the traffic is being altered. An 

intruder performing this kind of attack could take incoming data from 

the source and attach viruses or other malicious code and send it 

along its way undetected to the destination. Mitigation techniques for 

  

Figure 1.6: Interception Of Traffic Flow From Source To Destination By An  

Unauthorized Third Party. 

Info. 

sourc

e 

Info. 

Desti

natio

n 

 
Interceptio

n 
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 this type of attack could be the introduction of intrusion detection 

systems (IDS) which could look for different signatures which 

represent an attack. In the case of this example, the IDS may spot an 

unusual spike in latency for data to reach the destination. This 

increase in time would be from the intruder redirecting traffic and then 

altering traffic as shown in Figure (1.7).  

 

 

 

 

 

 

 

 

D) Fabrication – Much like Modification, Fabrication incorporates a 

3rd party host sending data to the original destination of traffic. In this 

case the 3rd party could be spoofing the credentials of the original 

source thereby appearing to the end destination to be a valid and 

trusted source of information. This would be a more intrusive way to 

perform an attack if someone is monitoring the original source. In this 

case the original source is no longer sending or receiving traffic and 

may raise suspicions as shown in Figure (1.8). 
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Figure 1.7: Modification Of traffic Flow From Source To  

Destination By An Unauthorized Third Party. 
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1.6.5.Attacks on RSA 

The saying "A chain is no stronger than its weakest link" is a very 

suitable for describing attacks on cryptosystems. The attackers' 

instinct is to go for the weakest point of defense, and to exploit it. 

Sometimes the weakness may have appeared insignificant to the 

designer of the system, or maybe the cryptanalyst will discover 

something that was not seen by anyone before. The important thing 

to remember (and this has been proven time and time again in the 

history of cryptography) is that no matter how secure you think your 

system is, there may be something you have not considered. 

At the moment RSA seems to be extremely secure. It has survived 

over 20 years of scrutiny and is in widespread use throughout the 

world. The attack that is most often considered for RSA is the 

factoring of the public key. If this can be achieved, all messages 

written with the public key can be decrypted. The point is that with 

very large numbers, factoring takes an unreasonable amount of time 

(see the factorization section for more details of the difficulty). It has  

  

Figure 1.8: Fabrication Of Traffic Flow From Unauthorized Third Party To 

Destination.  

Third Party Is Posing As A Trusted Source Of Information 

Info. 

source 

Info. destination 

Fabricator 
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not been proven that breaking the RSA algorithm is equivalent to 

factoring large numbers (there may be another, easier method), but 

neither has it been proven that factoring is not equivalent. 

I mentioned before that a chain is only as strong as its weakest link. 

In cryptology terms, the links in the chain include key generation, key 

management, the cryptographic algorithm and the cryptographic 

protocol. If there is a weakness in any one of these areas, it 

undermines the entire system. Imagine an eavesdropper was able to 

generate session keys in the same order that an e-commerce site 

web server used to get credit card details securely from customers 

over the Internet; this would allow the eavesdropper to read all the 

transactions. The section on random number generators discusses 

this topic. 

It's now time to get into the details of attacks on RSA. 

Searching the Message Space 

 

One of the seeming weaknesses of public key cryptography is that 

one has to give away to everybody the algorithm that encrypts the 

data. If the message space is small, then one could simply try to 

encrypt every possible message block, until a match is found with one 

of the ciphertext blocks. In practice this would be an insurmountable 

task because the block sizes are quite large. 

  

http://members.tripod.com/irish_ronan/rsa/random.html
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Guessing d 

Another possible attack is a known ciphertext attack. This time the 

attacker knows both the plaintext and ciphertext (they simply have to 

encrypt something). They then try to crack the key to discover the 

private exponent, d. This might involve trying every possible key in 

the system on the ciphertext until it returns to the original plaintext. 

Once d has been discovered it is easy to find the factors of n (for 

example use the algorithm in chapter 8 of The Handbook of Applied 

Cryptography). Then the system has been broken completely and all 

further ciphertexts can be decrypted. 

The problem with this attack is that it is slow. There are an enormous 

number of possible ds to try. This method is a factorizing algorithm as 

it allows us to factor n. Since factorizing is an intractable problem we 

know this is very difficult. This method is not the fastest way to 

factorize n. Therefore one is suggested to focus effort into using a 

more efficient algorithm specifically designed to factor n. This advice 

was given in the original paper. 

Cycle Attack 

This attack is very similar to the last. The idea is that we encrypt the 

ciphertext repeatedly, counting the iterations, until the original text 

appears. This number of re-cycles will decrypt any ciphertext. Again 

this method is very slow and for a large key it is not a practical attack. 

A generalization of the attack allows the modulus to be factored and 

  

http://members.tripod.com/irish_ronan/rsa/biblio.html#handbook
http://members.tripod.com/irish_ronan/rsa/biblio.html#handbook
http://members.tripod.com/irish_ronan/rsa/biblio.html#rsa
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 it works faster the majority of the time. But even this will still have 

difficulty when a large key is used. Also the use of p-- strong primes 

aids the security. 

The bottom line is that the generalized form of the cipher attack is 

another factoring algorithm. It is not efficient, and therefore the attack 

is not good enough compared with modern factoring algorithms (e.g. 

Number Field Sieve). 

I noticed an improvement on this algorithm. The suggested way is to 

use the public exponent of the public key to re-encrypt the text. 

However any exponent should work so long as it is prime to (p-1).(q-

1)(where p, q are factors of the modulus). So I suggest using an 

exponent such as 216 + 1. This number has only two 1s in its binary 

representation. Using binary fast exponentiation, we use only 16 

modular squaring and 1 modular multiplication. This is likely to be 

faster than the actual public exponent. The trouble is that we cannot 

be sure that it is prime to (p-1).(q-1). In practice, many RSA systems 

use 216 + 1 as the encrypting exponent for its speed. 

Common Modulus 

One of the early weaknesses found was in a system of RSA where 

the users within an organization would share the public modulus. That 

is to say, the administration would choose the public modulus 

securely and generate pairs of encryption and decryption exponents 

(public and private keys) and distribute them all the employees/users. 

The reason for doing this is to make it convenient to manage and to 

write software for.  
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However, Simmons shows how this would allow any eavesdropper to 

view any messages encrypted with two keys; for example when a 

memo is sent to several employees. DeLaurentis went further to 

demonstrate how the system was at even more risk from insiders, 

who could break the system completely, allowing them to view all 

messages and sign with anybody's key. 

Faulty Encryption 

Joye and Quisquater showed how to capitalize on the common 

modulus weakness due to a transient error when transmitting the 

public key. Consider the situation where an attacker, Malory, has 

access to the communication channel used by Alice and Bob. In other 

words, Malory can listen to anything that is transmitted, and can also 

change what is transmitted. Alice wishes to talk privately to Bob, but 

does not know his public key. She requests by sending an email, to 

which Bob replies. But during transmission, Malory is able to see the 

public key and decides to flip a single bit in the public exponent of 

Bob, changing (e,n) to (e',n). 

When Alice receives the faulty key, she encrypts the prepared 

message and sends it to Bob (Malory also gets it). But of course, Bob 

cannot decrypt it because the wrong key was used. So he lets Alice 

know and they agree to try again, starting with Bob re-sending his 

public key. This time Malory does not interfere. Alice sends the 

message again, this time encrypted with the correct public key. 

  

http://members.tripod.com/irish_ronan/rsa/biblio.html#simmons83
http://members.tripod.com/irish_ronan/rsa/biblio.html#joye87
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Malory now has two ciphertexts, one encrypted with the faulty 

exponent and one with the correct one. She also knows both these 

exponents and the public modulus. Therefore she can now apply the 

common modulus attack to retrieve Alice's message, assuming that 

Alice was foolish enough to encrypt exactly the same message the 

second time. 

A demon station of the Common Modulus attack and the Faulty 

Encryption attack can be found in this Mathematical notebook. 

Low Exponent 

In the cycle attack section above, I suggested that the encrypting 

exponent could be chosen to make the system more efficient. Many 

RSA systems use e=3 to make encrypting faster. However, there is 

vulnerability with this attack. If the same message is encrypted 3 times 

with different keys (that is same exponent, different module) then we 

can retrieve the message. The attack is based on the Chinese 

Remainder Theorem. See The Handbook of Applied Cryptography for 

an explanation and algorithm. 

Factoring the Public Key 

Factoring the public key is seen as the best way to go about cracking 

RSA. 

1.6.6 Cryptography Strength of RSA 

Encryption algorithms rely on strength in certain matters. 

Each algorithm has properties of the mismatch depending strongly on 

  

http://members.tripod.com/irish_ronan/rsa/rsa/8_faulty2.nb
http://members.tripod.com/irish_ronan/rsa/attacks.html#cycle
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 the encryption key, which depends on the arrangement of, 

and denounced it tries to integrate the key with the text of certain 

deviation.  

The algorithm RSA based on the variable N consisting of multiplying 

 each of the P and Q, which are relying on that of where to find the 

variable d, as the variable d is, hence the higher value of n. 

The variable d increases its size, the higher value of p and q the value 

of d increases, which means that the algorithm depends entirely on 

the adoption of the primes numbers because they generate a key d, 

depending on p and q are already primes numbers [21] . 

 

 1.6.7 Weaknesses in RSA 

These weaknesses RSA algorithm when we use two primes 

number and the following  points are used to break the algorithm in 

most cases. 

A) Small encryption exponent 

If you use a small exponent like e=3 and send the same message to 

different recipients and just use the RSA algorithm without adding 

random padding to the message, then an eavesdropper could recover 

the plaintext. 

B) Using the same key for encryption and signing 

Given that the underlying mathematics is the same for encryption and 

signing, only in reverse, if an attacker can convince a key holder to 
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 sign an unformatted encrypted message using the same key then 

she gets the original. 

c) Acting as an oracle 

There are techniques to recover the plaintext if a user just blindly 

returns the RSA transformation of the input. So don't do that. 

 

1. 7 Statement of Problem: 

The purpose of this thesis is to provide new approach to the theory 

of RSA. The proposed method is to use initial three prime's 

numbers instead of two in the original algorithm to find the variables, 

the public key and private key. Then there will be a comparison 

between the original and the new algorithm in terms of: 

Strength. 

Execution time. 

Break the public key or private key. 

The problem we have here is the ability to proof theory 

and proof strength of the algorithm, execution time of implementation 

and the implementation mechanism. We will try to proof the key 

strengths through using three prime numbers respect to the key 

strengths of using two prime numbers. 

It is well known that the algorithm RSA using two primes numbers to 

generate a public key and private key and depend on the length of the 

variable N in terms of the length the variable and using the primes 

numbers are too large to work the value of N is too long to, So as not  
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to break through the method of analysis of the factors, and with 

the progress and development of technology, the equipment can 

analyze the variable N, and solve this problem, the experts and 

developers to increase the length of the variable N and through the 

use of primes numbers larger. 

1.8. Contribution 

Classically, an RSA modulus has been composed from two primes. 

However, there are very practical reasons why using more than two 

primes might be preferred. 

 

The primes are smaller and key generation takes less time despite 

there being more of them. 

There are two possible methods for attacking an RSA key if it is built 

from more than two primes. The first is Number Field Sieve (NFS), 

which has already been discussed. The second method is the Elliptic 

Curve Method (ECM  ( [6]. 

We will discuss in this thesis all the things that had previously 

 reported. We will analyze the algorithm we have imposed and 

 compared with the original algorithm for RSA in terms of: 

Running time. 

Analysis attack algorithm. 
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We will also strengthen the comparisons through a computer program 

compares the encryption of the original algorithm and the 

algorithm proposed, as well as we will rely on equations to prove 

the analysis and comparison of the algorithm. 

  

The main specifications of machine that apply the proposed method 

have to be displayed and considered like the CPU speed capacity, 

because the main specifications play an important role to 

manipulations and calculations speed, where everybody know how 

significant time it. So, the workspace machine specification is: 

CPU= E7400 2.8GHz 

RAM: 3 GB (system memory). 

 

The process of analyzing the number n usually be convert to figure 

out binary system and then divided by digits and therefore do 

some calculations to find one prime numbers that constituent the 

key and noted that the number n in the way currently consists two-

digit number so if we find one of these numbers, the second will 

be known to have implied, In the new method, the process of 

analyzing the number n be the hardest so that if we found one of the 

prime number , it remains two numbers is unknown here that the new 

hard way. 
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1.9. Thesis Organization 

After the discussion of what is the security system, what is the 

significant of these systems, the risks that surrounded them, and the 

phases of development of these systems, we explicated the main 

topics that is related to cryptosystems in general, and too close to 

RSA cryptosystem, the factors, facts and specifications of RSA 

cryptosystem and its algorithm. The last session was for main 

emerged challenges and problems when somebody attempts to 

enhance the RSA cryptosystems. These topics discussed in chapter 

one. 

In chapter two, some related works that describe recent works will be 

given to give an insight to the latest research advancements  systems 

related to advance reservation attempts to enhance and break the 

RSA cryptosystem. 

 

In the chapter three,   the new design will be discussed and 

the custom to demonstrate the benefits of adding the third prime 

number will be explained. We have added on an algorithm 

which landed on the one hand to generate the available 

public and private key, as well as in terms of its impact on the 

variable n, and by the complex which will add third variable to the 

algorithm. We will process the breaking of the 

original algorithm and the proposed new small examples in order 

to demonstrate the complexity of both methods. 
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In the chapter four, we will develop a practical application in order to 

implement the algorithms the original and the new proposal and 

through this practice will judge any methods more effective in all 

respects, whether in terms of the speed factor or complex, or a 

security standpoint and we will work table summarizes all the 

differences between the original method and proposed method. 

 

Finally, in chapter five, the contribution of the proposed method will 

be reviewed; the achievements of proposed method to what extent 

this method has succeeded in completing the process of enhance the 

algorithm. Some future works will be suggested to improve the 

proposed solution or to attract the attention to the weakness points of 

RSA algorithm. 
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Chapter two 
{Theory & Related Works   } 

2.1.Introduction 

When they are producing a new security system, all researchers who 

are interested in the field of security they have to analyze the system 

and to find its strengths and weaknesses. When it is to find 

weaknesses, researchers to work on, scholars Good work to take the 

weaknesses and improve them to get them to regulations that are 

more power and safety. Through the results that they come out, 

the researchers bad take the weaknesses of harm to others. 

 

The problem with an algorithm (such as RSA) on the process of 

analysis is the primary factors. As all operations to break the algorithm 

based on factorizing method; there are few possible interpretations of 

breaking RSA. The most damaging would be for an attacker to 

discover the private key corresponding to a given public key and forge 

signatures. The obvious way to carry out this attack is to factor the 

public modulus, n, into its two prime factors; p and q. From p, q and 

E, the public exponent, the attacker can easily calculate d, the private 

exponent. The hard part is factoring n; the security of RSA depends 

on factoring being difficult. In fact, the task of recovering the private 

key is equivalent to the task of factoring the modulus; you can use d 

to factor n, as well as use the factorization of n to find d. 
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2.2.Two Categories of Attacks On RSA 

There is a straight method, to enumerate all elements in the 

multiplicative group of N until M is found, but such method results in 

an exponential running time, O(n^e). Therefore, Prefer very 

closely efficiency of the algorithm with a substantial lower running 

time. During the past years of attacking on RSA, such efficient 

algorithms can be classified into two categories: Mathematical 

Attacks and Implementation Attacks. 

2.2.1. Mathematical Attacks on RSA 

Mathematical attacks focus on attacking the underlying structure of 

RSA function. The first intuitive attack is the attempt to factor the 

modulus N. Because knowing the factorization of N, one may easily 

obtain Θ (N), from which d can be determined by     d = 1/e mod Θ 

(N). However, at present, the fastest factoring algorithm runs in 

exponential time. Our objective is to survey RSA attacks that decrypts 

message without directly factoring N [30]. 

Elementary attacks 

Generally speaking, Elementary attacks revealed blatant misuse of 

RSA. One common example of such misuse would be choosing 

common modulus N to serve multiple users. Let’s assume the same 

N is used by all users, and Alice is sending a message M to Bob, 

which has been encrypted by the RSA function, C = M^(eb) mod N. It 

looks like Marvin can not decrypt C since he does not know db [22]. 
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However, in fact, Marvin is able to use his own keys, em and dm, to 

factor n, and in turn recover Bob’s private key, db. So the resulting 

system is no longer secure [22]. 

Common Modulus 

To avoid generating a different modulus n = pq for each user one may 

wish to fix n once and for all. The same n is used by all users. A trusted 

central authority could provide user i with a unique pair ei , di from 

which user i forms a public key ( n , ei ) and a secret key ( n , di ) [30]. 

At first glance this may seem to work: a ciphertext C = Mea mod N 

intended for Alice cannot be decrypted by Bob since Bob does not 

possess da . However, this is incorrect and the resulting system is 

insecure. By Fact 1 Bob can use his own exponents eb , db to factor 

the modulus N. Once N is factored Bob can recover Alice's private 

key da from her public key ea. This observation, due to Simmons, 

shows that an RSA modulus should never be used by more than one 

entity [24]. 

 

Blinding 

Let ( n, d ) be Bob's private key and ( n, e ) be his corresponding public 

key. Suppose an adversary Marvin wants Bob's signature on a 

message M € Z*N. Being no fool, Bob refuses to sign M. Marvin can 

try the following: he picks a random r € Z*N and sets M` = re M mod 

N. He then asks Bob to sign the random message M`. Bob may be  
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willing to provide his signature S` on the innocent- looking M`. But 

recall that S` = (M`)d mod N. Marvin now simply computes S = S`/ r 

mod N and obtains Bob's signature S on the original M. Indeed [30], 

Se = (S`)e / re = (M`)ed / re ≡ M`/ re = M (mod n) 

This technique, called blinding, enables Marvin to obtain a valid 

signature on a message of his choice by asking Bob to sign a random 

“blinded " message. Bob has no information as to what message he 

is actually signing. Since most signature schemes apply a “one-way 

hash “to the message M prior to signing [25], the attack is not a 

serious concern. Although we presented blinding as an attack, it is 

actually a useful property of RSA needed for implementing 

anonymous digital cash (cash that can be used to purchase goods, 

but does not reveal the identity of the person making the purchase) 

[30]. 

Attacks on the actual RSA cryptosystem 

Small Private Key attacks 

To improve the RSA decryption performance in the matter of running-

time, Alice might tend to use a small value of da , rather than a large 

random number. A small private key indeed will improve performance 

dramatically, but unfortunately, an attack posed by M.Wiener [26] 

shows that a small d leads to a total collapse of RSA cryptosystem. 

This break of RSA is base on Wiener’s Theorem, which in general 

provides a lower constraint for d. Wiener has proved that Marvin may 

efficiently find d when d < 1/3 * N ^ (1/4) [22]. 
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In addition to his success in RSA-attack, Wiener also discovered a 

number of techniques that enable fast decryption and are not 

susceptible to his attack. Two sample techniques are illustrated as the 

following [30]. 

 

Choosing large public key: Replacing e by e’, where e’= e + t * Θ (N) 

for some large t. When e’ is sufficient large, i.e. e’>N^0.5, then 

Weiner’s attack can not be mounted regardless of how small d is [22]. 

 

Using Chinese Remainder Theorem: Suppose one chooses d such 

that both dp = d mod (p − 1) and dq = d mod (q − 1) are small, then a 

fast decryption of C can be carried out as follows: first compute Mp = 

C ^ dp mod p and Mq = C ^ dq mod q. Then use the CRT to compute 

the unique value M € ZN satisfying M = Mp mod p and M = Mq mod q. 

The resulting M satisfies M = C ^ d mod N as required. The point is 

that the attack by Wiener’s Theorem does not apply here because the 

value of d mod Θ (N) can be large [30]. 

Small Public Key Attacks 

Similar to the private key preferences, to reduce encryption time, it is 

customary to use a small public key (e), but unlike the previous 

situation, attacks on small e turn out to be much less effective. The 

most powerful attacks on small e are based on Coppersmith’s 

Theorem [24]. This theorem provides an algorithm for efficiently 

finding all roots of N that are less than x = N^(1/d). For brevity reason 
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, we will bypass the details of Coppersmith’s Theorem; rather focus 

on its impact. One example of applications based on this theorem is 

known as “Hastad’s Broadcast Attack” [27]. 

 

** Hastad’s Broadcast Attack 

Suppose Bob wishes to send an encrypted message M to a number 

of parties P1; P2;…; Pk. Each party has its own RSA key, < Ni, ei >. 

Hastad showed that a linear-padding to M prior to encryption is 

insecure, and further more, by eavesdropping Marvin learns Ci = fi 

(M)^ei mod Ni for i = 1..k, if enough parties are involved, Marvin can 

recover the plaintext Mi from all the ciphertext [27]. His discovery 

stands on the mathematical analysis on solving system of equations: 

gi (M) = 0 mod Ni (1). He proved that a system of univariate equations 

modulo relatively prime composites, such as (1), could be efficiently 

solved if sufficiently many such equations are provided [22]. 

2.2.2. Implementation Attacks on RSA 

Securely implementing RSA is not a trivial task. Attacks falling into 

this category take on the implementation pitfalls of RSA 

cryptosystems. A clever attack posed by Kocher, known as “Timing 

Attacks” [23], is a typical example of attacks on the RSA 

implementation. 
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Suppose a smartcard that stores a private RSA key is used, and 

Marvin may not be able to examine its contents and expose the key. 

However, by precisely measuring the time it takes the smartcard to 

perform an RSA decryption, Marvin can quickly discover the private 

decryption exponent d. This is referred to as “Timing Attacks” [22]. 

 

Timing Attacks 

 

Consider a smartcard that stores a private RSA key. Since the card 

is tamper resistant, an attacker Marvin may not be able to examine its 

contents and expose the key. However, a clever attack due to Kocher 

[28] shows that by precisely measuring the time it takes the smartcard 

to perform an RSA decryption (or signature), Marvin can quickly 

discover the private decryption exponent d [24]. 

 

We explain how to mount the attack against a simple implementation 

of RSA using the 

“Repeated squaring algorithm ". Let d = dn dn-1 … d0 be the binary 

representation of     d (i.e., d =( ∑ n i=0  2idi ) with di € {0; 1} ). The 

repeated squaring algorithm computes   C = Md mod N, using at most 

2n modular multiplications. It is based on the observation that C = ∏n 

i=0 M2idi mod N [24]. 

The algorithm works as follows: 
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Set z equal to M and C equal to 1. For i = 0,…….., n, do these steps: 

(a) If di = 1 set C equal to C * z mod N, 

(b) Set z equal to z2 mod N. 

At the end, C has the value Md mod N [24]. 

 

The variable z runs through the set of values M2i mod N for i = 0,…….., 

n, The variable C "collects" the appropriate powers in the set to obtain 

Md mod N. 

To mount the attack, Marvin asks the smartcard to generate 

signatures on a large number of random messages M1,……Mk € Z* N 

and measures the time Ti it takes the card to generate each of the 

signatures [24]. 

 

The attack recovers bits of d one at a time beginning with the least 

significant bit. We know d is odd. Thus d0 = 1. Consider the second 

iteration. Initially z = M2 mod N and C = M. If d1 = 1, the smartcard 

computes the product C * z = M *M2 mod N. Otherwise, it does not. 

Let ti be the time it takes the smartcard to compute Mi * M i 2 mod N. 

The ti's differ from each other since the time to compute Mi * M i 2 mod 

N depends on the value of Mi (simple modular reduction algorithms 

take a different amount of time depending on the value being 

reduced). Marvin measures the ti's offline (prior to mounting the 

attack) once he obtains the physical specifications of the card [24]. 

  



www.manaraa.com

37 

 

Kocher observed that when d1 = 1, the two ensembles (ti ) and (Ti ) 

are correlated. For instance, if, for some i , ti is much larger than its 

expectation, then Ti is also likely to be larger than its expectation. On 

the other hand, if d1 = 0, the two ensembles ( ti ) and (Ti ) behave as 

independent random variables. By measuring the correlation, Marvin 

can determine whether d1 is 0 or 1 [24]. 

 

Continuing in this way, he can recover d2, d3, and so on. Note that 

when a low public exponent e is used, the partial key exposure attack 

of the previous section shows that Kocher's timing attack needs only 

to be employed until a quarter of the bits of d are discovered [24]. 

 

There are two ways to defend against the attack. The simplest may is 

to add appropriate delay so that modular exponentiation always takes 

a fixed amount of time. The second approach, due to Rivest, is based 

on blinding. Prior to decryption of M the smartcard picks a random r € 

Z *
N  and computes M` = M * re mod N. It then applies d to M` and 

obtains C` = (M`)d mod N. Finally, the smartcard sets C = C`/r mod N. 

With this approach, the smartcard is applying d to a random message 

M` unknown to Marvin. As a result, Marvin cannot mount the attack 

[24]. 
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Kocher recently discovered another attack along these lines called 

power cryptanalysis. Kocher showed that by precisely measuring the 

smartcard's power consumption during signature generation, Marvin 

can often easily discover the secret key. As it turns out, during a multi-

precision multiplication the card's power consumption is higher than 

normal. By measuring the length of high consumption periods, Marvin 

can easily determine if in a given iteration the card performs one or 

two multiplications, thus exposing the bits of d [24]. 

 

Random Faults 

 

Implementations of RSA decryption and signatures frequently use the 

Chinese Remainder Theorem to speed up the computation of Md mod 

N. Instead of working modulo N, Bob first computes the signatures 

modulo  p and  q and then combines the results using the Chinese 

Remainder Theorem. More precisely, Bob first computes 

 

Cp = Mdp mod p and Cq = Mdq mod q 

 

where dp = d mod (p − 1) and dq = d mod (q − 1). He then obtains the 

signature C by setting 

 

C = T1Cp + T2Cq mod N  
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Where: 

 

 T1 =                                                       

                                                         

 

The running time of the last CRT step is negligible compared to the 

two exponentiations. Note that p and q are half the length of N. Since 

simple implementations of multiplication take quadratic time, 

multiplication modulo p is four times faster than modulo N. 

Furthermore, dp is half the length of d and consequently computing 

Mdp mod p is eight times faster than computing Md mod N. Overall 

signature time is thus reduced by a factor of four. Many 

implementations use this method to improve performance [24]. 

 

Boneh, DeMillo, and Lipton [29] observed that there is an inherent 

danger in using the CRT method. Suppose that while generating a 

signature, a glitch on Bob's computer causes it to miscalculate in a 

single instruction. Say, while copying a register from one location to 

another, one of the bits is flipped. (A glitch may be caused by ambient 

electromagnetic interference or perhaps by a rare hardware bug, like 

the one found in an early version of the Pentium chip.) Given an 

invalid signature, an adversary Marvin can easily factor Bob's 

modulus N [24]. 

  

0 mod p 

1 mod q 

1 mod p 

0 mod q 
And T2 = 
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We present a version of the attack as described by A. K. Lenstra. 

Suppose a single erroroccurs while Bob is generating a signature. As 

a result, exactly one of Cp or Cq will be computed incorrectly. Say Cp 

is correct, but C`q is not. The resulting signature is         C` = T1Cp + 

T2 C`q. Once Marvin receives C`, he knows it is a false signature since 

C`e ≠ M mod N. However, notice that  

C`e = M mod p while C`e ≠  M mod q 

 

As a result, gcd (N , C`e - M) exposes a nontrivial factor of N [24]. 

 

For the attack to work Marvin must have full knowledge of M, namely 

we are assuming Bob does not use any random padding procedure. 

Random padding prior used to signing defeats the attack. A simpler 

defense is for Bob to check the generated signature before sending it 

out to the world. Checking is especially important when using the CRT 

speedup method. Random faults are hazardous to many 

cryptographic systems. Many systems, including a non-CRT 

implementation of RSA, can be attacked using random faults [29]. 

However, these results are far more theoretical [24]. 

2.3.Integer Factorization 

"Factors" are the numbers you multiply to get another number. For 

instance, the factors of 15 are 3 and5, because 3×5 = 15. Some 

numbers have more than one factorization (more than one way of 

being factored). For instance, 12 can be factored as 1×12, 
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 2×6, or 3×4. A number that can only be factored as 1 times it self is 

called "prime". The first few primes are 2, 3, 5, 7, 11, and 13. The 

number 1 is not regarded as a prime, and is usually not included in 

factorizations, because 1 goes into everything. (The number 1 is a bit 

boring in this context, so it gets ignored) [31]. 

You most often want to find the "prime factorization" of a number: the 

list of all the prime-number factors of a given number. The prime 

factorization does not include 1, but does include every copy of every 

prime factor. For instance, the prime factorization of 8 is 2×2×2, not 

just "2". Yes, 2 is the only factor, but you need three copies of it to 

multiply back to 8, so the prime factorization includes all three copies 

[32]. 

On the other hand, the prime factorization includes only the prime 

factors, not any products of those factors. For instance, even 

though 2×2 = 4 and even though 4 is a divisor of 8, 4 is NOT in the 

PRIME factorization of 8. That is because 8 does not equal 4!, It's 

equal 2×2×2, This accidental over-duplication of factors is another 

reason why the prime factorization is often best: it avoids counting 

any factor too many times. Suppose that you need to find the prime 

factorization of 24. Sometimes a student will just list all the divisors 

of 24: 1, 2, 3, 4, 6, 8, 12, and 24. Then the student will do something 

like make the product of all these divisors: 1×2×3×4×6×8×12×24. But 

this equals 331776, not 24. So it's best to stick to the prime 

factorization, even if the problem doesn't require it, in order to avoid  
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either omitting a factor or else over-duplicating one [32]. 

In the case of 24, you can find the prime factorization by taking 24 and 

dividing it by the smallest prime number that goes into 24:  24 ÷ 2 = 

12. (Actually, the "smallest" part is not as important as the "prime" 

part; the "smallest" part is mostly to make your work easier, because 

dividing by smaller numbers is simpler.) Now divide out the smallest 

number that goes into 12:  12 ÷ 2 = 6. Now divide out the smallest 

number that goes into 6: 6 ÷ 2 = 3. Since 3 is a prime, you're done 

factoring, and the prime factorization is 2×2×2×3 [31]. 

By the way, there are some divisibility rules that can help you find the 

numbers to divide by. There are many divisibility rules, but the 

simplest to use are these [31]: 

num divisibility rules 

2 : If the last digit is even, the number is divisible by 2. 

3 : 
If the sum of the digits is divisible by 3, the number is also 

divisible. 

4 : 
If the last two digits form a number divisible by 4, the 

number is also divisible. 

  

Table 2.1 : Rules That Can Help You Find The Numbers To Divide 
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5 : If the last digit is a 5 or a 0, the number is divisible by 5. 

6 : 
If the number is divisible by both 3 and 2, it is also 

divisible by 6. 

7 : 

 

Take the last digit, double it, and subtract it from the rest 

of the number;  

if the answer is divisible by 7 (including 0), then the 

number is also. 

8 : 

 

If the last three digits form a number divisible by 8,  

then so is the whole number. 

9 : If the sum of the digits is divisible by 9, the number is also. 

10: If the number ends in 0, it is divisible by 10. 

11: 

Alternately add and subtract the digits from left to right. 

(You can think of the first digit as being 'added' to zero.) 

If the result (including 0) is divisible by 11,  

Example: to see whether 365167484 is divisible by 11, 

start by subtracting: [0+]3-6+5-1+6-7+4-8+4 = 0; 

therefore 365167484 is divisible by 11. 
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12: 
If the number is divisible by both 3 and 4, it is also 

divisible by 12. 

13: 

 

Delete the last digit from the number, then subtract 9 

times the deleted digit from the remaining number. If what 

is left is divisible by 13, then so is the original number. 

        

These rules are effective in the process of factorizing 

the numbers, but the numbers are relatively small, any of 

the numbers consists of 8 digits on the upper limit, either 

large numbers, the process of factorization have different theories, 

such as. 

2.3.1. Quadratic Sieve. 

General Number Field Sieve.  

Quadratic Sieve  

Quadratic sieve is an “efficient” algorithm for modern integer 

factorization  up to about 100 decimal digits [33], the second fastest 

method known (after the general number field sieve), and is 

considerably simpler than the number field sieve. It is a general 

purpose factorization algorithm, meaning that its running time 

depends solely on the size of the integer to be factored, and not on 

special structure or properties [33]. 
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2.3.2. General Number Field Sieve 

In number theory, the general number field sieve (GNFS) is the 

most efficient classical algorithm known for factoring integers larger 

than 100 digits. Heuristically, its complexity for factoring an 

integer n (consisting of log n bits) is of the form [35]. 

 

 

 

 

 

 

(in L-notation) [34]. It is a generalization of the special number field 

sieve: while the latter can only factor numbers of a certain special 

form, the general number field sieve can factor any number apart 

from prime powers (which are trivial to factor by taking roots). When 

the term number field sieve (NFS) is used without qualification, it 

refers to the general number field sieve [35]. 

 

The principle of the number field sieve (both special and general) can 

be understood as an improvement to the simpler rational sieve or 

quadratic sieve. When using such algorithms to factor a large 

number n, it is necessary to search for smooth numbers (i.e. numbers 

with small prime factors) of order n1/2. The size of these values is 

exponential in the size of n (see below). The general number field 

sieve, on the other hand, manages to search for smooth numbers that 

are sub exponential in the size of n [35].  

http://en.wikipedia.org/wiki/Prime_power
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Since these numbers are smaller, they are more likely to be smooth 

than the numbers inspected in previous algorithms. This is the key to 

the efficiency of the number field sieve. In order to achieve this speed-

up, the number field sieve has to perform computations and 

factorizations in number fields. This results in many rather 

complicated aspects of the algorithm, as compared to the simpler 

rational sieve [35]. 

 

Note: - "B - Smooth number"  

A positive integer is called B-smooth if none of its prime factors are 

greater than B. For example, 1620 has prime factorization 22 × 34 × 

5; therefore 1620 is 5-smooth because none of its prime factors are 

greater than 5. 5-smooth numbers are also called regular numbers or 

Hamming numbers, 7-smooth numbers are sometimes called highly 

composite [36]. 

 

** Hamming numbers: are also known as ugly numbers and also 5-

smooth numbers (numbers whose prime divisors are less or equal to 

5).  

 

 that B does not have to be a prime factor. If the largest prime factor 

of a number is p then the number is B-smooth for any B ≥ p. Usually 

B is given as a prime, but composite numbers work as well. A number 

is B-smooth if and only if it is p-smooth, where p is the largest prime 

less than or equal to B [36].  
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"Power smooth numbers" 

Further, m is called B-power smooth if all prime powers dividing m 

satisfy:  

 

For example, 243251 is 16-powersmooth since its greatest prime 

factor power is         24 = 16. The number is also 17-powersmooth, 18-

powersmooth, 19-powersmooth, etc [36]. 

2.4. Literature Reviews 

 

There are many published works related to breaking RSA algorithms 

some of them are as the following: 

"2.4.1.Efficient Method For Breaking RSA Scheme", 2008, [7]. 

 

Such method is the algorithm to attack 

the system (RSA), this algorithm 

 aims to obtain the private key from the public key. This method 

depends on the analysis of the factors of the variable n is effective in 

certain circumstances, which are usually an easy process if 

abounded of iterations, and is placed in appropriate 

limits to restrict the public key. It is better 

than some existing algorithms because they are 

faster and take fewer times respectively. 
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THE ATTACK ALGORITHM 

The steps of the proposed algorithm are as follows : 

1. Obtain entity A public key (e, n). 

2. Convert the modulus n to binary bits. 

3. Let b represent the number of bits of n. 

4. Compute d = [b / 4]. 

5. Find ed ≡ 1+ k (n − s +1) mod 2b. 

6. Repeat k from 1 to e until p2 − s * p + n ≡  0 mod 2b is true 

a. Compute ed ≡ 1+ k(n − s +1)mod 2d 

b. Compute p2 - s * p + n ≡ 0mod 2d  

7. Compute p0 ≡ p mod 2d. 

8. Compute q0 * p0 ≡ n mod 2d .  

9. Compute θ (n) as follows: 

• Compute 

n ≡ (2d * x + p0 )*(2d * y + q0 )  

• Compute p = ( 2d * x + p0)  

• Compute q = (2d * x + q0)  

• θ (n) = ( p −1)(q −1) 

10. Compute d = e* d − k *θ (n) = 1. 

 

That the proposed method works like the previous method, 

but here we generate the key from the three primes numbers not two, 

and through this method will overcome the weak point in the old way 

especially if we look at the points 8 and 9, a process factorization of  
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the number N so well that more the number of prime numbers, 

consisting of the number N, it will Increases the difficulty of the 

analysis. 

From here will be the process of generating the number N is faster 

than the old way will therefore be the generation of public and private 

key is much faster than the old method. 

"2.4.2. On Using RSA with low exponent in a public key 
Network", 1986,[37]. 

 

In order to speed up RSA encryption (and signature verification) it is 

useful to use small value for the public exponent e, say e = 3. 

However, this opens up RSA to the following attack, discovered by 

Hastad . 

 

Let us start with a simpler version. Suppose Bob wishes to send the 

same message M to k recipients, all of whom are using public 

exponent equal to 3. He obtains the public keys {Ni, ei} for i = 1, . . . , 

k, where ei = 3 for all i. Naively, Bob computes the ciphertext Ci = M3 

mod Ni for all i and sends Ci to the ith recipient . 

 

A simple argument shows that as soon as k > 3, the message M is no 

longer secure. Suppose Eve intercepts C1, C2, and C3, where Ci = M3 

mod Ni. We may assume gcd( Ni , Nj ) = 1 for all i ≠ j (otherwise, it is 

possible to compute a factor of one of the Ni’s.) By the Chinese 
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 Remainder Theorem, she may compute C ε Z* N1N2N3 such that C ≡ 

Ci mod Ni. Then C ≡ M3 mod N1N2N3; however, since M < Ni for all I , 

we have M3 < N1N2N3. Thus C = M3 holds over the integers, and 

Eve can compute the cube root of C to obtain M . 

 

Hastad proves a much stronger result. To understand it, consider the 

following naive defense against the above attack. Suppose Bob 

applies a pad to the message M prior to encrypting it so that the 

recipients receive slightly different messages. For instance, if M is m 

bits long, Bob might encrypt i · 2m +M and send this to the ith recipient. 

Hastad proved that this linear padding scheme is not secure. In fact 

he showed that any fixed polynomial applied to the message will result 

in an insecure scheme  . 

 

Theorem 3. 1 (Hastad) Suppose N1, . . . ,Nk are relatively prime 

integers and set Nmin = mini(Ni). Let gi(x) ε ZNi [x] be k polynomials of 

maximum degree d. Suppose there exists a unique M < Nmin satisfying 

 

gi(M) = 0 (mod Ni )                         for all i ε {0, . . . , k}. 

 

Furthermore suppose k > d. There is an efficient algorithm which, 

given {Ni, gi(x)} 

for all i, computes M. 
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Proof Since the Ni are relatively prime, we may use the Chinese 

Remainder Theorem to compute coefficients Ti satisfying Ti ≡ 1 mod 

Ni and Ti ≡ 0 mod Nj for all i ≠ j. Setting g(x) : = ∑i Ti gi(x) we see g(M) 

≡ 0 mod ∏ Ni. Since the Ti are nonzero we have that g(x) is not 

identically zero. If the leading coefficient of g(x) is not one, then we 

may multiply by its inverse to obtain a monic polynomial g(x) [48]. 

 

The degree of g(x) is at most d. By Coppersmith’s Theorem we may 

compute all integer roots x0 satisfying g(x0) ≡ 0 mod ∏ Ni  and |x0| < 

(∏ Ni )1/d.But we know M < Nmin < (∏ Ni )1/k < (∏ Ni )1/d, so M is such 

a root  . 

 

This can be applied to the problem of broadcast RSA as follows. 

Suppose the ith plaintext is padded with a polynomial fi(x), so that Ci 

≡ ( fi ( M ) ) ei mod Ni. Then the polynomials gi(x) := ( fi ( x ) ) ei − Ci 

satisfy the above relation. The attack succeeds once k > maxi( ei · deg 

fi ) [48]. 

 

We note that Hastad’s original result was significantly weaker, 

requiring k = O(d2) messages where d = maxi( ei · deg fi ). This is 

because the original result used the Hastad method for solving 

polynomial congruence's instead of the full Coppersmith method. 
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This attack suggests that randomized padding should be used in RSA 

encryption. 

2.4.3."Attack on the Cryptographic Scheme", 1994, [38]. 

 

The author has introduced a new type of attacks on RSA which enable 

a passive adversary to recover such message from the corresponding 

cipher text .This attack is of practical importance since many public 

key encryption schemes have been proposed which require the 

encryption of polynomial related messages[39], For instance include 

the key distribution protocol of Tatebayashi, Matsuzaki, and Newman 

,and the verifiable signature scheme of Franklin and Haber [40]. 

 

 

Coppersmith [41] introduced an efficient method for finding a root of 

a polynomial of degree k over zn , where n is the RSA modulus, 

provided that there is a root smaller than n1/k. The method produced 

two types of attacks on RSA with small encryption public key. When 

e = 3 and if an opponent knows an encrypted message c and more 

than 2/3 of the message m related to c then the opponent can 

efficiently discover the remainder of the message m . Assume now 

that messages are padded with random bit strings and encrypted with 

public key e = 3. If the opponent knows two encrypted messages c1 

and c2 which correspond to two encryptions of the same message m 

with different padding, then the opponent can efficiently retrieval m  
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given that the padding is less than 1/9 of the size of the modulus n . 

The second attack proposes that care should be exercised if 

employing random padding in conjunction with a small encryption 

public key". 

 

2.4.4. Factorization of a 512(bit RSA Modulus),1999,[9]. 

 

In this research, they try to breaking the code (RSA 512), have 

been using the system network of computers linked with each other  to 

break the code using the analysis of the factors of the variable n and 

then we can find a public key and private key. The code encrypted 

messages can be broken in this way. 

 

Another way to break RSA is to find a technique to compute e-th roots 

mod n. Since c = me mod n, the e-th root of c mod n is the message 

m. This attack would allow someone to recover encrypted messages 

and forge signatures even without knowing the private key. This 

attack is not known to be equivalent to factoring. No general methods 

are currently known that attempt to break RSA in this way. However, 

in special cases where multiple related messages are encrypted with 

the same small exponent, it may be possible to recover the 

messages. 
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The attacks just mentioned are the only ways to break RSA in such a 

way as to be able to recover all messages encrypted under a given 

key. There are other methods, however, that aim to recover single 

messages; success would not enable the attacker to recover other 

messages encrypted with the same key. Some people also studied 

whether part of the message can be recovered from an encrypted 

message . 

2.4.5."CRYPTANALYSIS OF RSA USING ALGEBRAIC 
ANDLATTICE METHODS", 2002, [48]. 

 

To speed up RSA decryption and signing, it is tempting to use a small 

secret exponent d rather a random d ≤ θ (N). Since modular 

exponentiation takes time linear in log2 d, using a d that is 

substantially shorter than N can improve performance by a factor of 

10 or more. For instance, if N is 1024 bits in length and d is 80 bits 

long, this results in a factor of 12 improvements while keeping d large 

enough to resist exhaustive search . 

Unfortunately, a classic attack by Wiener shows that a sufficiently 

short d leads to an efficient attack on the system. His method uses 

approximations of continued fractions. This attack is stated in the 

following theorem . 
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Theorem 3.2 (Wiener) Suppose N = pq and (N)0.5/2 < q < p <N0.5. 

Furthermore suppose d < 1/3 N1/4. There is an algorithm which, given 

N and e, generates a list of length logN of candidates for d, one of 

which will equal d. This algorithm runs in time linear in logN . 

Proof:  Since ed ≡ 1 mod θ(N), there is some k such that ed − k θ(N)= 

1. We may write this as:  

 

| e/ θ(N) – k/d | = 1 / d θ(N)  . 

 

Hence  e/ θ(N) is an approximation to k/d. The attacker does not know 

θ(N), but he does know N. Since (N)0.5/2 < q < p < 2N0.5  we have p + 

q − 1 < 3(N)0.5 and thus N − θ(N) < 3(N)0.5 . Now if the attacker uses 

e/N as an approximation we find : 

 

| e/ θ(N) – k/d | = |( ed-k θ(N) + k θ(N) –kN ) / dN  | 

 

= | 1-k( N - θ(N) ) / Nd | ≤ | 3kN0.5 / Nd | = | 3k / dN0.5 | 

Since e < θ(N), we know k < d < 1/3 N1/4 Thus 

| e / N – k / d | ≤  1 / dN1/4  < 1 / 2d2 

This is a classic approximation relation, and there are well-known 

methods to solve it. Such methods produce a list of all integers pairs 

(ki, di) satisfying gcd(ki, di) = 1 and  

| e / N – ki / di | < 1 / 2di
2 

This list is of length at most logN. Since ed − k θ(N) = 1 we know 

gcd(k, d) = 1.   
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Hence, d = di for some i ε {1, . . . , logN} . 

2.5. Summary 

The previous section was a presentation of related literature, most of 

which is very important for the thesis, it's used to view what is 

being reached by the experts and researchers to find out where your 

site where it is now, and how to proceed in the next step or develop 

things more. 

 

This knowledge, experts are keen to use many methods to create 

a competition to find the best solutions to lead them to know the 

private key of the RSA. Each of them has a special method, and most 

of them succeeded in finding the private key. But whenever the 

algorithm is broken, the system is to impose protection system safer. 

 

And of the most important queries and questions that evaluate 

the system decryption 

Securities are the following: 

 

Method finds private key from composed p and q value. 

Method could break the public key through the length of n value. 

Method was depending on easy algorithm or hard algorithm to break 

RSA algorithms. 

Method was needed a little effort or big effort of machines and 

personnel to find this key. 
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And so, each researcher or intruder beginning of the organization 

and develop a special method by relying on one or more of these 

factors. 

Factoring of n. 

p or q. 

d. 
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Chapter three 
 {The Proposed Method} 

3.1.Introduction 

In this chapter we will explain the RSA algorithm, considering its 

details and then  present the new algorithm on the same existing 

style of the original algorithm. 

Then we prove the new algorithm through mathematical 

equations that have been proven on the validity of its works and give 

some examples for explanation. Then we conducted a study to 

explain the benefits of the new algorithm in terms of generating the 

key and complexity in terms of the authentication.  

3.2.The RSA cryptosystem 

This algorithm contains two keys, public key and private key, the 

public key is known by anyone and is used to 

encrypt messages, while the 

private key is confidential and used to decrypt messages. 

This algorithm is based mainly on remnants mathematics division, 

which will summarize the following points. 

3.2.1Mathematics of the RSA Algorithm 

Given: n = pq where p and q are distinct primes [11]. 

Gcd ( e , Θ(n) ) = 1 

de = 1 mod Θ (n) 

When y = xe mod n and X = yd mod n 

Where:  x < min{ p, q }  
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Prove that: X = x mod n  x < n 

Proof: X = xde mod n 

           de = 1 mod Θ (n) 

            Θ (n) = (p - 1)(q - 1) if p and q are distinct primes 

            de = 1 + k(p - 1)(q - 1) 

            X = x1+k(p-1)(q-1) 

            X = x.(x(p-1))k(q-1) 

            But x(p-1) = xΘ(p) and x ε Z*
p 

            So x(p-1) = 1 mod p ...Fermat/Euler Theorem 

            So X = x.(1 mod p)k(q-1) 

            So X = x mod p 

            Similarly X = x mod q 

Because p and q are co-prime we can use the Chinese remainder 

Theorem 

Therefore X = x mod pq . 

        X = x mod n 

 

* Fermat/Euler Theorem 

 

Proof Zn = { 1, 2....(n - 1) } mod n [43]. 

Z*
n = { x ε Zn : gcd(x, n) = 1 } 

The order of Z*
n is Θ(n) and is called the Euler Function . 

We let u1 ,......... , uΘ(n) be an enumeration of all the elements of Z*
n 

:  

≡ 1 mod nn) Θ(, x n
*Zε x  Theorem  
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It is clear that x.u1,......... , x.uΘ(n) is also an enumeration of all the 

elements of Z*
n: 

Therefore x.u1,......... , x.uΘ(n) = u1 ,......... , uΘ(n) 

So xΘ(n) . u1 ,......... , uΘ(n) = u1 ,......... , uΘ(n) 

We let g = u1 ,......... , uΘ(n) 

g ε Z*
n         g-1 ε Z*

n 

So xΘ(n) . u1 ,......... , uΘ(n) . g-1 = u1 ,......... , uΘ(n) . g-1 

So xΘ(n) = 1 mod n 

** Chinese Remainder Theorem 

 

Proof               x = y mod p [44]. 

                              P | (x - y) 

                        x = y mod q 

                              q | (x - y) 

                        p and q are co-prime 

                              pq | (x - y) 

                              x = y mod pq 

  

Theorem x = y mod p 
               x = y mod q 

                     x = y mod pq 
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3.2.2.Proof of the RSA Algorithm 

Given positive integers n, e, and d such that [45] 

n = pq , where p and q are distinct primes………………...………..(1). 

gcd (e, Θ(n)) = 1……………………………………………………(2). 

de ≡ 1 (mod Θ(n))…………………………………………………..(3). 

Define the public and private key algorithms of a message m to be 

respectively, for      0 ≤ m < n, 

RSA Public(m) = me mod n,…………………………………………(4). 

RSA Private(m) = md mod n…………………………………………(5). 

Prove that 

m = RSA Private (RSA Public(m)), and that…………..……………..(6). 

m = RSA Public (RSA Private(m))……………………..…………….(7). 

 (Prove that the two algorithms (6) and (7) can be used inversely to 

obtain the message m or "Does RSA Encryption actually work?") 

Proof.  By substituting equations (4) and (5) into (6) and (7) 

respectively, we can say that [45]. 

RSAPrivate (RSAPublic(m)) = (me mod n)d mod n 

                                                = mde mod n. 

We can also say that 

RSAPublic (RSAPrivate(m)) = (md mod n)e mod n 

                                                = mde mod n. 

Therefore, equations (6) and (7) are equivalent, or 

RSA Private (RSA Public(m)) = RSA Public (RSA Private(m)). 

If we can prove 
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m = mde mod n 

Then the proof will be complete [45]. 

It is given that 

de ≡ 1 (mod Θ(n))……………………………….............…………(3). 

By definition of mods we can write (3) as 

Θ(n) | de - 1………………………………………............………..(8). 

Since Θ(n) = Θ(p)Θ(q) only when p and q are relatively primes, as in 

this case, we have 

Θ(n) = Θ(p)Θ(q) 

And by substitution into (8) we have [45]. 

Θ(p)Θ(q) | de - 1. 

By properties of divisors, we can write 

Θ(p) | de - 1, 

Θ(q) | de - 1 

Where there must be an integer k such that 

de - 1 = k Θ(p). 

Since p is prime, the Euler phi function states that Θ(p) = p - 1, so 

de - 1 = k(p - 1)…………………………………………….……..(9). 

By the symmetric property of mods, we can write [45]. 

mde ≡ mde (mod p) 

        ≡ mde - 1 + 1 (mod p) 

Which can also be written as? 

mde ≡ (mde - 1) * m (mod p)..............................................................(10). 

Substituting (9) into (10), we obtain 
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mde ≡ (mk(p - 1)) * m (mod p)........................................................... (11). 

Since p is a prime, any integer m for (11) will be either [45]. 

1) Relatively prime to p or will  

2) Be a multiple of p. 

 

When  

1) m is relatively prime to p, Fermat's Little Theorem states that [45] 

 

mp - 1 ≡ 1 (mod p). 

 

By properties of mods, we can write 

 

mk(p - 1) ≡ 1k (mod p), or 

 

mk(p - 1) ≡ 1 (mod p)........................................................................(12). 

 

By combining (11) and (12), we obtain 

 

mde ≡ 1 * m (mod p), or 

mde ≡ m (mod p)...........................................................................(13). 

 

In the second case where 

 2) m is a multiple of p, if p | m, then for any integer k p | mk [45]. 
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From the properties of mods we can write 

mde ≡ 0 (mod p), 

m ≡ 0 (mod p). 

 

Thus we can write 

 

mde ≡ m (mod p). 

 

Therefore, for all m,  

 

mde ≡ m (mod p) .............................................................................(14) 

and applying the same process for q we can write 

mde ≡ m (mod q). 

By the modular property of congruence which states that when m and 

n are relatively prime (as in our given statements), a ≡ b (mod m), and 

a ≡ b (mod n), then a ≡ b (mod mn), we can write [45]. 

mde ≡ m (mod pq) 

        ≡ m (mod n). 

By the modular property of symmetry, we can write [45]. 

m ≡ mde (mod n)............................................................................. (15) 

Since we have limited m to 0 ≤ m < n, only one integer will satisfy (15), 

and so 

m = mde mod n............................................................................... (16) 

If we substitute equation (16) with the original equations [45] we get: 

RSAPrivate (RSAPublic(m)) = mde mod n, and  
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RSAPublic (RSAPrivate(m)) = mde mod n 

We obtain, for 0 ≤ m < n, 

 

3.2.3. How It Works 

RSA cryptography is based on the following theorems: 

 

Theorem 1 (Fermat’s Little Theorem) If p is a prime number, and a is 

an integer such that (a, p) = 1, then [42] 

                                                  ap−1 = 1(mod p). 

Proof: Consider the numbers (a . 1), (a . 2), . . . (a . (p − 1))  for all 

modulo p. They are all different. If any of them were the same, say a 

. m = a . n ( mod p ) , then a · (m − n) = 0(mod p) so m− n must be a 

multiple of p. But since all m and n are less than p, m = n. 

                                      

Thus a · 1, a · 2, . . . , a· (p−1) must be a rearrangement of 1, 2, . . . , 

(p−1). So modulo 

p, we have [42]: 

                                                  

So ap−1 = 1(mod p). 

  

RSAPrivate (RSAPublic(m)) = m, & RSAPublic (RSAPrivate(m)) = m. 
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Theorem 2 (Fermat’s Theorem Extension): If (a , m) = 1 then aΘ(m) = 

1(mod m),where Θ(m) is the number of integers less than m that are 

relatively prime to m. The number m is not necessarily to be prime 

[42]. 

 

Proof: Same idea as above. Suppose Θ(m) = n. Then suppose that 

the n numbers less than m that is relatively prime to m is: 

                                                  a1, a2, a3, . . . , an. 

Then a · a1, a · a2, . . . , a · an are also relatively prime to m, and must 

all be different, 

so they must just be a rearrangement of the a1, . . . , an in some order. 

Thus [42]: 

 

                                                   

 

Modulo m, so an = 1(mod m). 

 

Theorem 3 (Chinese Remainder Theorem) Let p and q be two 

numbers (not necessarily primes), but such that (p , q) = 1. Then if a 

= b(mod p) and a = b(mod q) we have a = b(mod pq) [42]. 

 

Proof: If a = b(mod p) then p divides (a − b). Similarly, q divides (a − 

b). But p and q are relatively prime, so pq divides (a − b). 

Consequently, a = b(mod pq).  
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Proof of the Main Result: 

Based on the theorems above, here is why the RSA encryption 

scheme works. 

Let p and q be two different (large) prime numbers, let 0 ≤ M < pq be 

a secret message, let d be an integer (usually small) that is relatively 

prime to (p − 1)(q − 1), and let e be a number such that de = 1(mod 

(p − 1)(q − 1)). (We will see later how to generate this e given d ) [42].  

 

The encoded message is C = Me(mod pq), so we need to show that 

the decoded message is given by M = Cd(mod pq). 

 

Proof: Since de = 1(mod (p−1)(q −1)) , de = 1+k(p−1)(q −1) for some 

integer 

k. Thus: 

 

                      Cd = Mde = M 1 + k ( p − 1) ( q − 1 ) = M · (M ( p − 1 ) ( q − 1 ) ) k. 

 

If M is relatively prime to p, then 

 

Mde = M · (M p − 1 ) k ( q − 1 ) = M · (1) k ( q − 1 ) = M(mod p)……………..(1) 

 

By the extension of Fermat’s Theorem giving Mp−1 = 1(mod p) followed 

by a multiplication of both sides by M. But if M is not relatively primes 

to p, then M is a multiple of p, so equation 1 still holds because both 

sides will be zero, modulo p [42].  
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By exactly the same reasoning, 

 

Mde = M · Mq−1 = M(mod q) 

.................................................................(2) 

 

If we apply the Chinese remainder theorem to equations 1 and 2, we 

obtain the result we want:  

Mde = M(mod 

pq)...................................................................................(3) 

 

Finally, given the integer d, we will need to be able to find another 

integer e such that de = 1(mod (p−1)(q−1)). To do so we can use the 

extension of Fermat’s theorem to get d Θ ( ( p − 1 )( q − 1 ) ) = 1(mod 

(p−1)(q−1)), so d Θ ( ( p − 1 )( q − 1 ) ) - 1(mod (p−1)(q−1)) 

is a suitable value for e [42]. 

3.2.4. Analysis of Rsa Cryptosystem 

The RSA Cryptosystem requires the use of a public key and a private 

key. Both these keys must fulfill certain conditions to ensure the 

integrity of the system. The following steps illustrate the key 

generation algorithm for RSA [47]: 

1. Choose two large prime numbers of approximately the same size, 

namely p and q. 

2. Compute the product of these two primes, n = pq. 

3. Also, compute the value of φ(n) = (p-1)(q-1). 
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4. Choose an integer e between 1 and φ(n) such that gcd(e,φ(n)) = 1. 

5. Finally, compute d whereby d = e-1 mod(φ(n)). 

The public key is (n , e) whereas the private key is (n , d). 

COMPLEXITY FOR STEP 1: 

  

1. For selecting the first prime number p, the complexity can be 

computed as the product of the number of numbers to be tested for 

primality and the complexity of one primality test. Complexity of 

MILLER-RABIN [46] gives the above mentioned complexities so the 

complexity for finding a prime number is O(s. (log2p)3 .ln p) [47].  

 

2. Similarly for the second prime number q, complexity is O(s. (log2q)3 

.ln q). 

 

COMPLEXITY FOR STEP 2: 

As step 2 involves only the computation of n, which is the product of 

p and q. So the complexity of step 2 is O(log2p. log2q ) binary 

operations [47].  

COMPLEXITY FOR STEP 3:  

By MODULAR-EXPONENTIATION, the complexity for the second 

part is Θ(n) -1. Therefore complexity of the step 3 is [47] 

O((log2(p-1).(q-1))3. ((p-1).(q-1)-1)). 

COMPLEXITY FOR STEP 4: 
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The complexity for step 4 is O(log2 (p-1).(q-1)+ gcd(e, (p-1).(q-1))), as 

we know that e and Θ(n) are prime to each other so gcd( e , ( p - 1).( 

q – 1 )) = 1,and so complexity is [47]. 

O((log2(log2 p-1).( log2q-1))3 + 1) 

3.3.. The New Approach RSA cryptosystem 

The RSA Enhance 
From here came the subject of  research, which instead of using two 

primes numbers to generate a public key and private key, now 

use three primes numbers with reduced size, generates the 

variable N 

large and the process of analysis of the factors it more difficult than 

the original way, as well as using three primes numbers, it increases 

the ease of generating Public key and private key, which means that 

it saves us time and effort. 

 

To illustrate this speech louder image take the example of the use 

of an algorithm RSA original and proposed algorithm. 

 

The key strength of the RSA depends on the two prime numbers p 

and q. The process of factorizing of n will lead to gain the values of p 

and q. It is much easier to find two numbers from factoring n than 

finding the value of three numbers from n. 
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The proposed method is to use three prime numbers to construct the 

value of n. In this case it is very difficult for the intruder to find the 

three values from factoring n. Therefore the new algorithm will be as 

follows. 

 

Encrypts messages through the following algorithm, which is divided 

into three steps: 

 

1. Key Generation 

(a).  Choose three distinct prime numbers p, q and s. 

 

(b). Find n such that n = p*q*s. 

     n will be used as the modulus for both the public and private keys. 

 (c). Find the Phi of n, φ (n) = (p-1)(q-1)(s-1). 

 

(d). Choose an e such that 1 < e < φ (n), and such that e and φ (n) 

share no   Divisors other than 1 (e and φ (n) are relatively prime). e is 

kept as  the public key exponent. 

 

(e). Determine d (using modular arithmetic) which satisfies the 

congruence relation  

     d*e ≡ 1 mod φ (n). 

     In other words, pick d such that de - 1 can be evenly divided by (p- 

1)(q-1)(s-1), the Phi, or φ(n).This is often computed using the 
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 Extended Euclidean Algorithm, since e and φ(n) are relatively prime 

and d is to be the modular multiplicative inverse of e*d is kept as the 

private key exponent. 

The public key has modulus n and the public (or encryption) exponent 

e. The private key has modulus n and the private (or 

decryption) exponent d, which is kept secret . 

 

2. Encryption 

(a). A transmits his/her public key (modulus n and exponent e) to B, 

keeping his/her private key secret. 

 

(b). When Person B wishes to send the message "M" to Person A, 

she/he first converts M to an integer such that 0 < m < n by using 

agreed upon reversible protocol known as a padding scheme. 

 

(C). Person B computes, with Person A's public key information, the 

cipher text c corresponding to 

c ≡ me (mod n). 

(d). Person B now sends message "M" in cipher text, or c, to Person 

A . 
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3. Decryption 

Person A recovers m from c by using his/her private key exponent, d, 

by the computation 

 

m ≡ cd (mod n). 

Given m, Person A can recover the original message "M" by 

reversing the padding scheme. 

This procedure works since 

c ≡ me (mod n), 

cd ≡(me)d (mod n), 

cd ≡ mde (mod n). 

By the symmetry property of modular we have that 

mde ≡ mde (mod n). 

Since de = 1 + k φ (n), we can write 

mde ≡ m1 + k φ (n) (mod n),  

  

Figure 3.1: Public-Key Cryptography 
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mde ≡ m(mk) φ (n) (mod n), 

mde ≡ m (mod n). 

From Euler's Theorem and the Chinese Remainder Theorem, we 

can show that this is true for all m and the original message 

cd ≡ m (mod n), is obtained . 

3.3.1Mathematics of the New Approach RSA Algorithm 

Given: n = pqs where p , q and s are distinct primes . 

gcd( e , Θ(n) ) = 1 

de = 1 mod Θ (n) 

When y = xe mod n and X = yd mod n 

Where:  x < min{ p, q, s } 

Prove that: X = x mod n  x < n 

Proof: X = xde mod n 

           de = 1 mod Θ (n) 

            Θ (n) = (p - 1)(q – 1)( s – 1) if p , q and s are distinct primes 

            de = 1 + k(p - 1)(q - 1) ( s – 1) 

            X = x1+k(p-1)(q-1) ( s – 1) 

            X = x.((x(p-1)) (q-1)) k( s – 1)  

            But x(p-1) = xΘ(p) and x ε Z*
p 

            So x(p-1) = 1 mod p ...Fermat/Euler Theorem 

            So X = x.(1 mod p)k(q-1) ( s – 1) 

            So X = x mod p 

            Similarly X = x mod q 
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                           X = x mod s 

Because p , q and s are co-prime we can use the Chinese remainder 

Theorem 

Therefore X = x mod pqs . 

        X = x mod n 

3.3.2. Proof of the New Approach RSA Algorithm 

 

Given positive integers n, e, and d such that . 

 

n = pqs , where p , q and s are distinct 

primes………..…...………..(1). 

gcd (e, Θ(n)) = 1……………………………………………………(2). 

de ≡ 1 (mod Θ(n))…………………………………………………..(3). 

 

Define the public and private key algorithms of a message m to be 

respectively, for      0 ≤ m < n, 

RSAPublic(m) = me mod n,…………………………………………(4). 

RSAPrivate(m) = md mod n…………………………………………(5). 

Prove that 

m = RSAPrivate (RSAPublic(m)), and that…………..……………..(6). 

m = RSAPublic (RSAPrivate(m))……………………..…………….(7). 
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 (Prove that the two algorithms (6) and (7) can be used inversely to 

obtain the message m, or "Does RSA Encryption actually work?") 

Proof.  By substituting equations (4) and (5) into (6) and (7) 

respectively, we can say that . 

 

RSAPrivate (RSAPublic(m)) = (me mod n)d mod n 

                                                = mde mod n. 

We can also say that 

 

RSAPublic (RSAPrivate(m)) = (md mod n)e mod n 

                                                = mde mod n. 

 

Therefore, equations (6) and (7) are equivalent, or 

RSAPrivate (RSAPublic(m)) = RSAPublic (RSAPrivate(m)). 

If we can prove 

m = mde mod n 

Then the proof will be complete . 

It is given that 

de ≡ 1 (mod Θ(n))……………………………….............…………(3). 

By definition of mods we can write (3) as 

Θ(n) | de - 1………………………………………............………..(8). 

Since Θ(n) = Θ(p)Θ(q) Θ(s) only when p and q are relatively prime, 

as in this case, we have 

Θ(n) = Θ(p)Θ(q) Θ(s)  
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And by substitution into (8) we have . 

Θ(p)Θ(q) Θ(s) | de - 1. 

By properties of divisors, we can write 

Θ(p) | de - 1, 

Θ(q) | de – 1, 

Θ(s) | de - 1 

Where there must be an integer k such that 

de - 1 = k Θ(p). 

Since p is prime, the Euler phi function states that Θ(p) = p - 1, so 

de - 1 = k(p - 1)…………………………………………….……..(9). 

By the symmetric property of mods, we can write . 

mde ≡ mde (mod p) 

      ≡ mde - 1 + 1 (mod p) 

Which can also be written as? 

mde ≡ (mde - 1) * m (mod p)..............................................................(10). 

Substituting (9) into (10), we obtain 

mde ≡ (mk(p - 1)) * m (mod p)........................................................... (11). 

Since p is prime any integer m for (11) will be either . 

1) Relatively prime to p or will  

2) Be a multiple of p. 

 

When  

1) m is relatively prime to p, Fermat's Little Theorem states that . 

mp - 1 ≡ 1 (mod p). 
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By properties of mods, we can write 

mk(p - 1) ≡ 1k (mod p), or 

mk(p - 1) ≡ 1 (mod p)........................................................................(12). 

By combining (11) and (12), we obtain 

mde ≡ 1 * m (mod p), or 

 

mde ≡ m (mod p)...........................................................................(13). 

In the second case where 

 2) m is a multiple of p, if p | m, then for any integer k p | mk . 

From the properties of mods we can write 

mde ≡ 0 (mod p), 

m ≡ 0 (mod p). 

Thus we can write 

mde ≡ m (mod p). 

Therefore, for all m,  

mde ≡ m (mod p) .............................................................................(14) 

and applying the same process for q and s we can write 

mde ≡ m (mod q). 

mde ≡ m (mod s). 

 

By the modular property of congruence which states that when m and 

n are relatively prime (as in our given statements), a ≡ b (mod m), and 

a ≡ b (mod n), then a ≡ b (mod mn), we can write . 

mde ≡ m (mod pqs) 
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        ≡ m (mod n). 

By the modular property of symmetry, we can write . 

m ≡ mde (mod n)............................................................................. (15) 

Since we have limited m to 0 ≤ m < n, only one integer will satisfy (15), 

and so 

 

m = mde mod n............................................................................... (16) 

If we substitute equation (16) with our original equations we get: 

RSAPrivate (RSAPublic(m)) = mde mod n, and 

RSAPublic (RSAPrivate(m)) = mde mod n 

 

We obtain, for 0 ≤ m < n, 

 

3.3.3. ANALYSIS of the RSA Enhance 

 

The RSA Enhance requires the use of a public key and a private key. 

Both these keys must fulfill certain conditions to ensure the integrity 

of the system. The following steps illustrate the key generation 

algorithm for the proposed RSA : 

1. Choose three large prime numbers of approximately the same size, 

namely p, q and s 

2. Compute the product of these three primes, n = pqs. 

  

RSAPrivate (RSAPublic(m)) = m, & RSAPublic (RSAPrivate(m)) = m. 
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3. Also, compute the value of φ(n) = (p-1)(q-1)(s-1). 

4. Choose an integer e between 1 and φ(n) such that gcd( e ,φ(n)) = 

1. 

5. Finally, compute d whereby d = e-1 mod(φ(n)). 

The public key is (n , e) whereas the private key is (n , d). 

 

COMPLEXITY FOR STEP 1: 

1. For selecting the first prime number p, the complexity can be 

computed as the product of the number of numbers to be tested for 

primality and the complexity of one primality test. Complexity of 

MILLER-RABIN [46] gives the above mentioned complexities so the 

complexity for finding a prime number is O(s. (log2p)3 .ln p) .  

 

Similarly for the second prime number q, complexity is O(s. (log2q)3 

.ln q). 

Similarly for the third prime number s, complexity is O(s. (log2s)3 .ln 

s). 

COMPLEXITY FOR STEP 2: 

As step 2 involves only the computation of n, which is the product of 

p , q and s. So the complexity of step 2 is O(log2p. log2q. log2s ) binary 

operations. 

COMPLEXITY FOR STEP 3:  

By MODULAR-EXPONENTIATION, the complexity for the second 

part is Θ(n) -1. Therefore complexity of the step 3 is : 
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O((log2(p-1).(q-1) .(s-1))3. ((p-1).(q-1) .(s-1)-1)). 

 

COMPLEXITY FOR STEP 4:  

 

The complexity for step 4 is O(log2 (p-1).(q-1) .(s-1)+ gcd(e, (p-1).(q-

1) .(s-1))), as we know that e and Θ(n) are prime to each other so gcd( 

e , ( p - 1).( q – 1 ) .(s-1)) = 1,and so complexity is : 

O((log2(log2 p-1).( log2q-1) .( log2s-1))3 + 1). 

 

3.3.4. Examples of the RSA Enhance 

 

Example One: 

Let: p= 7 , q= 13 , s= 19 

 

Calculate n value 

n= p*q*s 

n= 7*13*19 

n= 1729 

Calculate φ (n) value 

φ (n)= (p-1)*(q-1)*(s-1) 

φ (n)= (6)*(12)*(18) 

φ (n)=1296 

Select E value: the E value between 1 and φ (n) and small odd and 

GCD(E, φ (n))=1 

E= 17  
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Calculate d 

D = (1+k*( φ (n)))/E 

D = (1+k*1296)/17                               k=4 

D =305 

 

Public key= (17,1729) 

Private key= (305,1729) 

 

Encryption the M value =88 

C= 88^17 mod 1729 =1395 

 

Decryption the C value =1395 

M=1395^305 mod 1729 =88 

 

Example Two: 

Let: p= 4993, q= 4327, s= 4363 

 

Calculate n value 

n= p*q*s 

n= 4993 *4327*4363 

n= 94261354093 

Calculate φ (n) value 

φ (n)= (p-1)*(q-1)*(s-1) 

φ (n)= (4992)*( 4326)*( 4363) 

φ (n)= 94199099904  
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Select E value: the E value between 1 and φ (n) and small odd and 

GCD(E, φ (n))=1 

E= 92333 

 

Calculate d 

D = (1+k*( φ (n)))/E 

D = (1+k*94261354093)/ 92333 

D =20955124517 

 

Public key= (92333, 94261354093) 

Private key= (20955124517, 94261354093) 

 

Encryption the M value =88 

C= 88^32416188127 mod 481399399260648937 =19301800791 

 

Decryption the C value =1395 

M=19301800791^79836446209 mod 481399399260648937 =88 

3.4. Breaking the Original RSA and the RSA Enhance 

In this part will work the process of comparing in terms 

of  the factorization of the variable 

N, and the numbers will be small and 

 will take the way  Pollard rho Factoring Method and Rabin modulus 

to be factored. 
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3.4.1. Pollard rho Factoring Method 

This method is based on a combination of two ideas that are also 

useful for various other factoring methods [7].  

THE ATTACK ALGORITHM 

 

set a = b = 2 ; 

for I = 1, 2,…, do 

a = a2 + 1 mod n 

b = b2 + 1 mod n 

b = b2 + 1 mod n 

d = gcd(a-b, n); 

If 1 < d < n then return d and terminate with success 

if d = n then terminate the algorithm with failure 

 

Will try this method on small numbers until we see the power 

of analysis in the original algorithm and the algorithm is assumed. 

Example on RSA algorithm 

Pollard rho algorithm for finding a non-trivial factor of n = 455459. The 

following table lists the values of variables a, b, and d and at the end 

of each an iteration of step for loop of algorithm.  
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Table 3.1: Breaking RSA Algorithm By Pollard Rho Factoring Method 

a    b  d 

5   26  1 

26   2871  1 

677  179685        1 

2871  155260 1 

44380  416250 1 

179685  43670  1 

121634  164403 1 

155260  247944 1 

44567  68343  743 

 

Hence two non-trivial factors of 455459 are 743 and 

455459/743=613. 

Example on the new algorithm assumed 

      

      P= 97 , q= 91 , s= 79 

N= 697333 

 

Table 3.2: Breaking RSA Enhance Algorithm By Pollard Rho 

Factoring Method 

a    b  d 

5   26  7 
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n/7=99619 is not prime ,it is divisible by 13 

99619/13= 7663 is not prime, it is divisible by 79. 

3.5.Summary 

We note in this chapter that we can prove the correctness of the 

proposed algorithm through the mathematical equations and we 

have shown its strength through the examples and it 

was working correctly. As for the algorithm complexity, it 

is proved by the assumed equations that it is more difficult than 

the original algorithm. The generation of the variable n will be faster 

mathematically because it is composed of three prime numbers of 

less value to be composed of two numbers. 

Hence, we note that the algorithm will be faster in terms 

of generating public key and private key and we proved it through the 

practical application, either in terms of breaking the algorithm through 

the factoring, all methods that depend on the analysis of the 

variable n is composed of two numbers will be ineffective because 

the algorithm assumed based on three numbers to be a variable n. 

 

The standard way to analyze the variable n is if we have 

the first component of the variable n, it will find the second 

number which is also  ineffective because if we found first number of 

the component of the variable n, still there are two numbers are 

unknown, which will increase the complexity in the analysis. 
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Chapter four 
The Experimental Work 

4.1. Introduction 

Experimental work is indispensable session, where practical 

implementations for overall proposed system would be applied, and  

judge the extent of the proposed system is good and useful.. The 

selected programming language to implement the proposed system 

is Visual C sharp. Net (C#.net). 

 

C#. net is a multi-form programming language encompassing strong 

typing, imperative, declarative, functional, generic, object-oriented 

(class-based), and component-oriented programming disciplines. It 

was developed by Microsoft within its .NET initiative and later 

approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 

23270). C# is one of the programming languages designed for the 

Common Language Infrastructure. 

 

C# is intended to be a simple, modern, general-purpose, object-

oriented programming language [49]. Its development team is led by 

Anders Hejlsberg. The most recent version is C# 4.0, which was 

released on April 12, 2010. 
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4.2. Implementations 

Here, we will make a trial run sample to trace the steps of the 

proposed system on a practical exercise. 

4.2.1.. First application (Encryption & Decryption Text) 

Now, let's state a simple example for the proposed system to make 

the matters easier and displaying how much reduce time and effort, 

see how the first program works and what objective we can gain. 

The application of the proposed system has been made to review how 

to create a public key, private key, encryption, and decryption process 

using the proposed RSA. 

Run application of Encryption 

Figure (4.1) shows the main screen. 

 

Figure 4.1: main screen 

Here, we open the main screen and choose the system that have to 

work on it. The main system is used two primes numbers, or the 

proposed system which uses three primes’ numbers.  
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Select The " Encryption Text By Two Primes " 

Figure (4.2) shows in the left side, you should write the message 

(plain text) to be encrypted and then click on the Encrypt button. 

 

Figure 4.2: Encryption Text By Two Primes 

Figure (4.3) shows the encrypted message and all the variables which 

are appear after inserting the two prime numbers. 

  

Time 

Encrypt Text 
Time 

Decrypt Text 
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Figure 4.3: Encrypted  message  

Here, after we wrote the message and clicking on encrypt 

button, which makes the program to encrypt the message at the 

bottom and give us all the variables as follows: 

Message = welcome everyone 

Prime1 = 472921 

Prime2 =  733884  

N ( prime1 * prime2 ) = 231417743377 

Phi ( ( prime1-1 ) * ( prime2-1 ) ) = 231416781120 

E (public key) = 97973 

D (private key) = 12599155997 

  

Time 

Encrypt Text 

Time 

Decrypt Text 
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Encrypted message: 

MTAwMTEwMDEwMTAwMTEwMTAwMDAxMDExMDExMTExMTA

wMDExMTAxMTEwMTAwMDAxMTAxMDAwMDExMDEwMDAxMT

AxMDExMDExMA==MTExMDExMTExMDAxMDAxMDEwMDEwMD

AwMDExMTAxMDEwMTAxMA==MTEwMDExMTAxMDAwMDEwM

TEwMDAwMDEwMTAwMTAxMDExMQ==MTAxMDAxMTAxMDEw

MTEwMTEwMTExMDAwMDExMTAxMDAwMDEwMQ==MTExMDE

xMDAwMTExMDAxMTAxMDAxMDAxMTAxMDAxMDAxMDAxMA==

MTAxMTEwMTAwMDAxMTAxMDAwMDExMDEwMDAxMTAxMDEx

MDExMA==MTAwMDEwMTEwMDAwMTAxMDEwMDExMDAwMD

AxMDEwMTAxMTExMTE=MTAxMTEwMTAwMDAxMTAxMDAwMD

ExMDEwMDAxMTAxMDExMDExMA==MTAwMTAwMTAxMTAxMT

AwMDExMTAxMDEwMDAwMDExMDAxMDExMTA=MTAxMTEwMT

AwMDAxMTAxMDAwMDExMDEwMDAxMTAxMDExMDExMA==MT

EwMDExMDAxMTEwMTAxMTExMTExMTExMTEwMTEwMDEwMT

AxMA==MTAwMDEwMDExMDEwMDEwMDExMDAxMDExMDEwM

DEwMTAxMDEwMDE=MTAxMDAxMTAxMDEwMTEwMTEwMTEx

MDAwMDExMTAxMDAwMDEwMQ==MTEwMTAwMDExMTExMDA

xMTEwMDExMTEwMTAxMDExMDEwMTAwMQ==MTAxMTEwMTA

wMDAxMTAxMDAwMDExMDEwMDAxMTAxMDExMDExMA== 

 

Now, we take the encrypted part of the message and place it in the 

right side of the screen in Figure (4.4), and we enter the value of N and 

private key D. 
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Figure 4.4: Insert Value To The Right Side 

After entering the values we are clicking on decrypt button as in Figure 

(4.5). 

  

Time 

Encrypt Text 

Time 

Encrypt Text 

Time 

Decrypt Text 

Time 

Decrypt Text 
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Figure 4.5: Decrypt message 

Note that, the encrypted message returned to its original text form 

after the decrypted process has been taken place. 

-- Time Encrypt text 

In this part of the program, the program calculates the time from the 

beginning of the implementation of the program until the end of it, in 

other words from the moment of clicking on the Encrypt button till we 

received the encrypted text, see Figure (4.6).  

 

         Figure 4.6: Time Encrypt Text 

This time on the screen is a time of encrypting the plain text; you will 

notice that the time varies from one computer to another according to 

its architecture, because it depends on the specifications of the 

device. 

-- Time of Text Decryption 

In this part of the program, it calculates the time from the moment 

of clicking on the Decrypt button till you get the Plain text, as in Figure 

(4.7). 

 

Figure 4.7: Time Decrypt Text 
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This time on the screen is the Decrypting time for the plain text; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device. 

Select The " Encryption Text By Three Primes " 

From the main screen you can select the “Encryption Text By using 

Three Primes " rather than choosing " Encryption Text By using  two 

Primes ", this will appear to us the next screen as in Figure (4.8). 

 

Figure 4.8:Encrypt_3_primes 

This screen is an application of the proposed method 

for algorithm RSA, here, in the left side, you write the message 

you want to be encrypted and then click on the Encrypt button. 
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Figure 4.9: Encrypt message 

 

In Figure (4.9) we wrote the message and clicking on encrypt 

button, this will activate the program to encrypt the message at the 

bottom and gives us all the variables as follows: 

 

Message = welcome everyone 

Prime1 = 8951 

Prime2 =  7476  

Prime3 = 6073 

N ( prime1 * prime2 * prime3 ) = 367524058903 

Phi ( ( prime1-1 ) * ( prime2-1 ) * ( prime3-1 )  ) = 367368144000 

E (public key) = 99397 
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D (private key) = 276306881267 

Encrypted message: 

MTAxMTAwMTExMDExMDExMTExMTAxMDExMTAwMDAxMDEx

MDEwMDA=MTAxMDAxMDEwMTAxMTAxMTAxMTAxMDAwMDEx

MTEwMDExMDAxMTExMTAwMDAwMDExMDExMTAwMTEwMTA

xMDEwMDAwMTAxMDEwMDEwMTAxMTEwMDEwMTAwMDExM

DExMDExMTEwMTAxMTEwMDAwMTExMDAwMQ==MTAxMDExM

TEwMTEwMDExMDAwMDAxMDAxMTEwMDEwMTAwMDA=MTEw

MDAxMDEwMTExMTAxMTAxMDEwMDExMTAxMTAxMTEwMDE=

MTAxMDAxMDEwMTAxMTAxMTAxMTAxMDAwMDExMTEwMDEx

MDAxMTExMTExMDEwMTExMTAxMTExMTAxMTEwMDAxMTEw

MDAxMDExMTAwMTA=MTAxMDAxMDEwMTAxMTAxMTAxMTAx

MDAwMDExMTEwMDExMDAxMTExMTAwMTExMTExMDAxMTEw

MDAwMDEwMTAxMDAwMDAwMDAxMTAxMTExMTAxMDAxMDE

wMTAxMTAxMTAxMTAxMDAwMDExMTEwMDExMDAxMTExMTE

wMTExMTAwMTExMTExMTExMTAxMTAxMDAwMDExMTAwMTEx

MA==MTAwMDEwMDAwMTAxMTEwMTExMTAxMTAxMTAwMDEx

MDEwMTAwMTA=MTAxMDExMTEwMTEwMDExMDAwMDAxMDA

xMTEwMDEwMTAwMDA=MTAwMDAxMDEwMTEwMDAxMDAxMT

AwMDEwMDAxMTEwMDEwMTExMDA=MTAxMDAxMDEwMTAxM

TAxMTAxMTAxMDAwMDExMTEwMDExMDAxMTEx 

 

Now, we take the encrypted part of the message and place it in the 

right side of the program, and we will enter a value of N and private 

key D as in Figure (4.10).  
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Figure 4.10: Insert Value To The Right Side 

After we entered the private key and N values we are clicking 

on decrypt button as in Figure (4.11). 
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Figure 4.11: Decrytp Message 

Note that, the encrypted message (Cipher Text) returned to its original 

format (Plain Text) that we entered. 

-- Time Encrypt text 

In this part of the program, the program calculates the time from the 

beginning of the implementation of the program until the end of it, in 

other words from the moment of clicking the Encrypt button till gives 

you an encrypted text as in Figure (4.12).  

 

        Figure 4.12: Time Encrypt Text   
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This time on the screen is a time of encrypting the plain text; you will 

notice that the time varies from one computer to another, because 

it depends on the specifications of the device. 

 

-- Time Decrypt Text 

In this part of the program, the program calculates the time from the 

moment of clicking the Decrypt button till gives you the Plain text as 

in Figure (4.13). 

 

 

Figure 4.13: Time Decrypt Text 

 

This time on the screen is a time of Decryption of the plain text; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device. 

 

At the end, we note that the process of encryption and 

decryption and the way of original method and proposed method are 

working without any error. As well as encryption and decryption 

process by using the proposed method are faster, and to prove 

it will repeat the process of encryption and decryption over time using 

the two methods, and you will notice the results. 
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When you repeat the process of encryption and decryption of the text 

"welcome everyone ", we will get the following results as in Table (4.1) 

and Table (4.2): 

 

       Table 4.1:Encryption And Decryption By using Two Primes 

Prim

e1 

Prim

e2 
N phi 

Publ

ic 

key 

Private 

key 

Time 

Encr

ypt 

mSe

c 

Time 

Decr

ypt 

mSe

c 

2110

7 

2102

3 

443732

461 

443690

332 

904

81 

426669

641 
1.11 

1.32 

2102

3 

2116

3 

444909

749 

444867

564 

903

71 

419456

687 
1.46 

1.46 

2117

9 

2113

9 

447702

881 

447660

564 

903

79 

191285

623 
1.46 

1.46 

2116

9 

2116

9 

448126

561 

448042

24 

901

87 

292588

51 
1.62 

1.47 

2124

7 

2118

7 

450160

189 

450117

756 

900

53 

769098

41 
1.62 

1.47 
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2116

3 

2127

7 

4502851

51 

4502427

12 

9007

3 

2582798

5 

1.6

3 

1.4

7 

2113

9 

2134

7 

4512542

33 

4512117

48 

9017

3 

2840783

09 

1.6

3 

1.4

7 

2112

1 

2140

1 

4520105

21 

4519680

00 

9000

1 

2739900

01 

1.7

9 

1.4

7 

2132

3 

2121

1 

4522821

53 

4522396

20 

9008

9 

2015498

09 

1.9

4 

1.6

2 

2141

9 

2139

1 

4581738

29 

4581310

20 

9016

3 

1475512

87 

2.6

2 

1.6

2 

      

     Table 4.2: Encryption And Decryption By using Three Primes 

Prim

e1 

Prim

e2 

Prim

e3 
N phi 

Publ

ic 

key 

Privat

e key 

Time 

Encr

ypt 

mSe

c 

Time 

Decr

ypt 

mSe

c 

677 691 709 
331675

163 

33023

9520 

904

01 

2593

3744

1 

1.09 1.3 

733 829 683 
415029

731 

41335

7472 

900

53 

4764

5837 
1.21 1.31 
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769 709 773 
421455

833 

41977

0368 

903

79 

5154

0643 
1.25 1.31 

677 887 751 
450974

749 

44920

2000 

901

07 

2047

4243 
1.47 1.46 

683 839 797 
456710

489 

45492

6736 

904

07 

2578

3895 
1.47 1.47 

823 821 691 
466896

953 

46508

7600 

900

07 

8719

7143 
1.47 1.47 

727 769 839 
469053

857 

46724

1984 

904

39 

3064

1266

3 

1.62 1.47 

911 757 823 
567563

021 

56550

3120 

902

17 

5341

0543

3 

1.62 1.47 

303 821 857 
569209

973 

56715

1360 

900

01 

4905

2376

1 

1.63 1.52 

907 761 919 
634318

613 

63209

8080 

903

73 

5427

3159

7 

1.78 1.6 

 

Now we will compare between the two tables and you will 

notice results in Figures (4.14 & 4.15): 
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Figure 4.14: Graph Time Encrypt 

 

Figure 4.15: Graph Time Decrypt 

From Table (4.1): Encryption and Decryption by Two Primes 

Average of N = 449863773   

Average of Phi ( n ) = 409493354 

Sum of Time Encrypt = 16.88 msec 

Average of Time Encrypt = 1.6.88 msec 

Sum of Time Decrypt = 14.83 msec 

Average of Time Decrypt = 1.483 msec 

From Table(4. 2): Encryption and Decryption by Three Primes  

Time Encrypt

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Time Encrypt by 2

Primes

Time Encrypt by 3

Primes

Time Decrypt

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

s 
* 

10
-3

Time Decrypt By 2

Primes

Time Decrypt By 3

Primes

Number Value In Table 

Number Value In Table 

Time (msec) 

Time (msec) 

Number Value In Table 

Time (msec) 
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Average of N = 478288838 

Average of Phi ( n ) = 476457824 

Sum of Time Encrypt = 14.61 msec 

Average of Time Encrypt = 1.461 msec 

Sum of Time Decrypt = 14.38 msec 

Average of Time Decrypt = 1.438 msec 

Now we note that the process of encryption and decryption in the 

proposed method are faster than the original method by the 

apparent results. 

4.2.2.. Second application:  

(Generation & Factorization of The Key, Component From 18 Digits) 

 

-- run application : Figure (4.16) shows the main screen. 

 

Figure 4.16: Generation and Factorization of the Key 
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In this program we can generate the key component of (2) primes 

or (3) primes number. The program will  calculate each of the N,  Phi, 

public key ( E ),  private key ( D ) and find the Greatest Common 

Divisor  (GCD) for E & Phi and the number of iterations until we 

find the private key. Also it can calculate the required time to 

generate the key, whether it consist of 2 or 3 primes, as well as we 

can make factorization for the variable n, whether it has been 

generated from  2 or 3 primes. Also it calculates the time 

of factorization, allows the insertion of the variable n manually, 

factorizes it and calculates the factorization time as in figure (4.16). 

Now we will explain how the program works:-  

A- Clicking on Generate Key for 2 Primes Button. 

 

 

Figure 4.17: Generate Key From 2 Primes 

We note that, it  identified 2 primes, find  N, Phi, public key  
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( E ),  private key ( D ),  find GCD ( E , Phi ) and Iteration ( k ) till it 

finds the private key, and we will note that it will activates 

the button "Factoring from 2 Primes" as in figure (4.17). 

B- Clicking on Generate Key Time Button 

 

Figure 4.18 : Time Generate Key By 2 Primes 

This time on the screen is a time of Generate Key from 2 Primes; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device see figure (4.18). 

C- Clicking on Factoring N from 2 primes Button. 

 

Figure 4.19: Factoring N From 2 Primes 

Figure (4.19) shows the factorization of the variable n and the value 

of the 2 prime numbers will be displayed. 

Clicking on Time Factoring N Button, the result is shown in Figure 

(4.20). 
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Figure 4.20:Time Factoring N By 2 Primes 

 

This time on the screen is the time of Factoring N into 2 Primes; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device. 

E- Clicking on Generate Key from 3 Primes Button 

  

we note that  identified 3 

primes,  find each of N, Phi, public 

key ( E ) , private key(D), find GCD( 

E , Phi ) and Iteration ( k ) till it 

find the private key, and we 

note that it was activating 

the button "Factoring from 2 

Primes" as in Figure (4.21). 
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          Figure 4.21: Generate Key From 3 Primes 

 

F- Clicking on Time Generate Key Button 

 

Figure 4.22 : Time Generate Key By 3 Primes 

 

This time on the screen is the time of Generate Key by 3 Primes; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device as in Figure (4.22). 

G- Clicking on Factoring N from 3 primes 

 

Figure 4.23: Factoring N From 2 Primes 

 

Here is the analysis of the variable n and the program to find primes 

numbers of its constituent as in Figure (4.23). 

Clicking on Time Factoring N Button 
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        Figure 4.24: Time Factoring N From 3 Primes 

This time on the screen is a time of Factoring N from 3 Primes; you 

will notice that the time varies from one computer to another, because 

it depends on the specifications of the device as in Figure (4.24). 

 

We'll show some examples for the factorization of the 

variable n and the time difference of factorization as in Figure (4.25). 
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Figure 4.25: Some Examples For The Factorization N From 3 Primes 

 

In this program we can also manually enter the variable n and 

we have the process of factorizing whether  2 Primes or 3 Primes and 

the program can give you the time for the factorization process as in 

figure (4.26). 
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Figure 4.26:Factoring And Time To N=35 From 2 Primes       Figure 

4.27: Factoring And Time To N = 105 From 3 Primes 

At the end, we note that the process of generate key and factorization 

for variables N and the way of original method and proposed method it 

is working without any error. As well as the factorization using the 

proposed method is faster, and to prove it, it will repeat the process 

of factorization using two methods, and you will notice the results, see 

Figure (4.26). 

  

Example on 2 primes: 

N = 35 

Example on 3 primes: 

N = 105 
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When you repeat the process of Generation and factorization of the 

variables N, you will we get the following results as in Tables (4.3 & 

4.4): 

       Table 4.3: Generation And Factorization Key From 18 Digits By 

2 primes 

Prim

e1 

Prim

e2 
N Phi 

Publi

c key 

Priva

te 

key 

Time  

generat

e key 

mSec 

Time 

factorin

g key 

mSec 

6951

4789

1 

6951

4616

3 

48322

93891

46192

000 

483229

387755

898000 

3241

6188

191 

1133

9337

5007

1 0.15 2,858 

6951

4661

9 

6951

4834

7 

48323

00231

20488

000 

483230

021730

193000 

3241

6190

071 

1832

5246

2554 0.16 3,455 

6951

4675

7 

6951

4828

7 

48323

00773

42155

000 

483230

075951

860000 

3241

6189

987 

1170

3383

4167

8 0.2 4,125 
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6951

4822

7 

6951

4834

7 

48323

11409

19030

000 

483231

139528

734000 

3241

6182

61 

3415

9603

0093 0.31 4,812 

        

       Table 4.4: Generation And Factorization Key From 18 Digits By 

3 primes 

Pri

me

1 

Pri

me

2 

Pri

me

3 

N Phi 

Pub

lic 

key 

Priva

te 

key 

Time  

generat

e key 

mSec 

Time 

factorin

g key 

mSec 

75

18

71 

80

00

53 

80

02

87 

4814

0196

0348

7090

00 

481400

116829

810000 

324

161

879

87 

3672

2584

6967 0.15 

3,114.9

30 

75

18

79 

80

00

77 

80

02

81 

4814

1791

4414

0050

00 

481416

070854

363000 

324

161

899

09 

2093

5595

3611 0.16 

8,867.9

20 
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75

18

71 

80

01

59 

80

02

09 

4814

1881

5807

8250

00 

481416

972245

455000 

324

161

893

81 

2268

5097

7597 0.16 

9,588.6

30 

75

18

23 

80

00

77 

80

04

73 

4814

9754

9502

1450

00 

481495

705734

158000 

324

161

886

01 

3773

8432

3190 0.31 

12,332.

340 

Now we will compare between the two tables and you will notice the 

following results: 

The values of the variable N in the two tables are almost equal. 

Total times of generation key in the first table = 0.82s and Total times 

of generation key in the second table = 0.78s, we note that the 

process of generating the key in the second table is faster 

than the first table. 

 

Total times factorization of the key in first table = 15.250s and Total 

times factorization the key in second table = 33,903.820s, we 

note that the total time of the factorizing of the variable n in the first 

table is much faster than  in the second table. 
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        Figure 4.28: Time Generate Key                                                   
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Figure 4.29: Time Generate Key 

Note from the Figure (4.28) that the process of generating the key to 

be faster in the proposed method because the primes numbers 

consisting of the variable N be of little value either in the original 

method The primes numbers are much larger than the size of 

the primes numbers in the proposed method, therefore, the 

multiplication in the proposed method is easier and faster either in the 

original method is more complex and require more time, and 

this explains the speed of generating the key in the proposed 

method about the original method. 

Summary of Programs 

This paragraph displays a table comparison between the original 

method and the proposed method 

  

Number Value In Table 
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       Table 4.5: Comparison Between The Original Method And The 

Proposed Method 

 Original method Proposed method 

speed Generation Of 

Keys 
Slower Faster 

Speed Encryption Slower Faster 

Speed Decryption Slower Faster 

Speed Factorization Faster Slower 

Size Message No Different No Different 
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Summary 

Now we can summarize the results of the proposed method that the 

process of encryption and decryption is faster than the original 

method by the apparent results. 

Also, we can summarize the results of the second program that the 

process of generating the key in the proposed method is faster 

than generating the key in the original method. As well as the process 

of factorizing of the variable n in the first table is faster than the 

process of factorizing of the variable n in the second table, 

and this shows that security in the proposed method is more stronger 

than the security in the origin method. 
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Chapter Five 
 Conclusion and Future Works 

5.1. Formalistic Appraising 

With this proposed method, the goal is to fulfill an efficient way to find 

a way to increase the protection and safety, speed and accuracy of 

the RSA algorithm to protect data and user-specific information. We 

provide the speed and protection at the same time by the proposed 

method and we have proven that in theory and practice. 

 

Initially, the proposed method  have been implemented with lengths 

12 - 19 digits of n and with an unpretentious specifications of the 

computer, the results are Encryption and decryption of data in more 

speed and greater protection with the same precision. 

 

It's important to specify the used personal computer which has been 

used during the study; its specification as the following: 

 

CPU =E7400 (2.80 GHz, 3 MB) 

RAM: 3 GB (System memory). 

For that - as it is earlier mentioned - everybody has to know the 

operations of  breaking an overall security system needs special tools 

and devices that luxuriate with high level of performance, specialized 

and ability of tolerance. So if somebody likes to break a security 

system; using a normal tools and devices such as personal computer 
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 that is absolutely not enough and no way to get a good results using 

these tools and device. Also, there is basic difference between 

somebody who tries to make a gap in security system and that who 

tries to break the overall system. 
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5.2. Conclusion 

The encryption system of the most important operations of the 

protection of information and data for the user was proposed coding 

systems currently used during the thesis. We have studied one of the 

encryption systems that are very important and used in our daily lives, 

RSA System. We have studied the strengths and weakness in 

the RSA algorithm. We have focused in this thesis on the  analysis 

process of the variable n and we've developed  more 

complex analysis for the variable n. 

 

We can sum up the conclusions in the following points: 

The proposed method has succeeded in increasing the difficulty of 

analysis the variable N. 

 Speed in the process of generating keys. As it previously appeared 

in chapter 4, especially when talking about an assumed machine with 

currently times, and where it's a personal computer in overall. The 

main specifications of machines that will actuate the proposed 

methods have to be apposite – at least – such as the CPU speed and 

RAM capacity, because the main specifications – if we want to forget 

an applications and utilities that runs within an operating system -   

plays an important role of manipulations and calculations speed, 

where everybody know what significance of the time. 

Note through the process of generating the keys which is faster, 

it increases the speed of the process of encryption and decryption, 

and this means the provision of time on the user. 
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3.5. Future Works 

We would like to say - after all have been mentioned - that the process 

of encryption and decryption of data must be highly confidential and 

precise so as not to break the data in any way to become more 

superior and efficient than the troublemakers we have to work to keep 

up with their ideas and simulate their ways of thinking. This way is 

one of the main stages that leads to wards building a solid algorithm 

to protect a system. 

After all that, there are many and many ideas that could be applied 

and get best results, such as the following: 

Working to find method for generating the variable n without doing 

any calculation or this calculations will be through a complex 

equations so it is not easy to analyze the variable n and this is 

considered to be one of the weakest points in RSA algorithm. 

With beamy development of networks and the speed of the networks, 

it is possible to exploit the smart neural network to engage it with the 

proposed thesis to produce an integral protection system from any 

threat. 

Also, the genetic algorithm (GA) could be used to support the 

protection functions of variant security algorithm and to make these 

systems is harder to break or attack, because as it is known, GA is a 

search technique used in computing to find exact or approximate 

solutions to optimization and search problems. At each step, the 

genetic algorithm selects individuals at random from the current 

population to be parents and uses them to produce the children for  
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the next generation. Over successive generations, the population 

"evolves" toward an optimal solution. You can apply the genetic 

algorithm to solve a variety of optimization problems that are not well 

suited for standard optimization algorithms, including problems in 

which the objective function is discontinuous, no differentiable, 

stochastic, or highly nonlinear. So, this technique is wonderful idea to 

exhort the experts to produce new generations of developed RSA 

algorithms.  

Additionally, the development of technologies such as tools and 

machines make the challenges nearest to solution and any problem 

got solvable and nothing impossible, because as we say, what is 

available in these days of tools and technologies, it is not available in 

last days, also it's true if we say about the next days. As we know, the 

ideas have been breed seriatim with technology. But the main thing 

is exploit every thing towards enhancing and making world better. 
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